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Introduction 
Microelectronics, the silicon chip technology which has made 

the cheap microcomputer possible, is transforming the economy 

of the industrialised nations and increasingly affecting the jobs 

and the lives of many people. Computing power is virtually the 

only commodity which is falling in cost each year. It's now 

becoming so cheap that the personal microcomputer is some¬ 

thing that will soon find its way into innumerable homes. Even 

now it's in high street shops rubbing shoulders with its slightly 

younger brothers, the calculators and the digital watches, which 

were virtually unknown a decade ago. Unlike them, it offers a 

growing number of people an intellectual challenge as well as 

being a practical and versatile new tool just as capable of 

controlling things as of juggling with information. 

In terms of computing power what the big computer does 

today the little computer could do tomorrow. Whether big or 

small, all computers function in very similar ways. But what 

can they do? How do they work? How can they be used in 

solving problems? Where is the technology taking us? What are 

its limitations? The purpose of this book (and the television 

series it accompanies) is to answer these questions and to 

encourage a new kind of literacy - 'computer literacy'. 
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Why 'computer 

literacy' ? 

The heirs to the Industrial 

Revolution. 
Shareholders riding in a broad 

gauge train try out the 
Metropolitan Line, London's first 

underground railway, just before 

the opening on January 10th, 1863 

Since microcomputers and other similar devices are not very 

different from many other technological innovations that have 

changed the face of society, it helps to look back in history. The 

last time something as dramatic as this happened was perhaps 

when engineering got into business during the Industrial 

Revolution. At that time a small group of predominantly youthful 

men who mastered a new technology were vigorously trans¬ 

forming their world. Consider Brunei who, at the age of 27, was 

the chief engineer of the Great Western Railway, hurling his 

broad gauge lines like spears across a landscape that had not 

changed since the time of the enclosures. What did their con¬ 

temporaries think of these arrogant youngsters, with their new 

ideas and amazing powers? 

Ordinary, well-educated people then lacked the 'engineering 

literacy' which we all have now. They thought that to travel 

faster than 30 mph would kill you. They thought the pressure of 

5 



The heirs to the Microelectronics 

Revolution. 

Learning to use the computer in the 

primary school. 

steam in a boiler would infallibly burst it. They 'knew' that steel 

ships would sink. On the other hand, they thought it not unlikely 

that a man could pedal hard enough to lift himself into the air. 

Their notions were shapeless because they did not under¬ 

stand the basic laws of physics - simple enough laws that most 

of us now absorb from our culture without even knowing that 

we have done so. Do you not, for instance, at least have a vague 

idea how an old-fashioned clock works? Even if you are not a 

mechanic you have some notion of cog wheels driving each 

other: a spring, a pendulum swinging to and fro, and so on. Few 

people nowadays are baffled by a steam locomotive or a petrol 

engine, even if they do not know the subleties of its operation. 

We are the heirs to nearly 200 years of engineering literacy; 

we can distinguish the practical from the absurd; we have a 

grasp of the basic rules and can apply them sensibly to situations 

we see around us. Computing is just the same, except that only 

a few of us have yet been let into the basic secrets. The result is 
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Using this book 

exactly the same attitudes that could be found at the start of 

engineering: belief in the impossible, refusal to believe the 

obvious - a general instability of opinion. However, it all turned 

out to be quite easy last time; computing need be no different. 

What we are trying to do in this book is to show that 

the fundamentals are not as difficult as many people might think. 

Of course, we can't, in this short introduction, teach you to build 

your own computer; but that is something few of us need to 

know, just as most people manage to drive a car perfectly well 

without knowing how to build one - or even, in most cases, 

how to repair it. 

We hope to put across some of the basic ideas which will 

enable you to treat the computer as a tool which you will come 

across more and more often, and which you will find useful in 

your daily life - much, in fact, as we treat cars today. 

Some readers will doubtless have access to computers - 

either their own computers, or computers at their school, college 

or work. We hope this book will give them some interesting new 

ideas. However, it is not necessary to make use of a computer to 

follow the book, nor do we assume that you already know any¬ 

thing about computers, about electronics, or about mathematics. 

This is not a practical handbook to any particular computer. 

It is not a course in computer programming (though we do look 

at the basics of programming). It is an introduction to computers, 

what they are and what they do, which we hope will give you 

the confidence to go on and learn more. If you choose not to 

learn more, what you read here should still give you an insight 

into the new technology which is fast changing our modern 

world. 

This book is not intended just for you to read through from cover 

to cover. Of course, you can read it through chapter by chapter, 

and it will make sense if you do. We hope you will use it, too, as 

a source of reference, to dip into when you need some explana¬ 

tion. With this in mind, we have tried to provide plenty of 

cross-references. 

The glossary at the back should provide an explanation of 

many of the technical words used in computing. In the text we 

try to keep these to a minimum and to explain them as they 

l first occur. 
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Setting the scene 
Computers are essentially stupid. They only do what they are 

told to do in instructions given to them by human beings. 

Nevertheless, the things they can do - and are being asked to 

do today - are many and various and are vital to our modern 

way of life. 

Working out 
the weather 

On the evening's television weather spot we see the pictures 

from space of clouds and winds and then the presenters' maps 

with their symbols for sleet, hurricane, rain and fog. Although 

the computer doesn't come forward to take its bow, it has done 

most of the work that leads up to the predictions. 

The process starts with the collection of weather information. 

Hundreds of weather stations round the world - on light ships, 

at airports, in military posts - send information to their national 

weather centres by radio and telex. Satellites take pictures of 

cloud patterns and, using infra-red cameras, of the temperature 

of the earth below. This information is stored in the satellite by 

a small computer and transmitted by radio to earth-based 

stations when the satellite is overhead. Staff at these stations 

forward it by radio and telex to the weather centre. 

In the weather centre, a picture of today's weather is built 

up in the computer - a very big computer this time, for the 

problem is enormous. Values for the air pressure, temperature, 

wind speed and direction and humidity for the hundreds of 

weather stations are fed in. The computer fits them all into a big 

overall pattern. It then has to do a most complicated calculation: 

taking the current conditions in the air over each kilometre 

square of the earth's surface it has to calculate - using the well- 

known laws of physics - what effect the air masses in neighbour¬ 

ing squares will have on it, and vice versa. This involves such 

calculation and recalculation that it needs to be done on the very 

largest machines if the calculation is to be done faster than the 

weather happens outside the computer room. Even then, the 

forecast is not terribly accurate, but it's better than wetting a 

finger and holding it up to the wind. At the end of all this, the 
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Deep depression over Britain - 

as seen by a weather satellite. 
weather forecaster can say 'Light winds, some showers and 

bright spells - warmer than yesterday'. 
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Keeping the 
engine cool 

In films, the dashing pilot puts on his dark glasses, vaults into 

the cockpit of his aircraft and zooms off into the blue. In real 

life he has a few more things to do. One of them is managing 

his jet engines, for they are temperamental beasts. As the aircraft 

accelerates down the runway, air is blown into the engine intakes 

at greater pressure and in larger volume because the aircraft is 

moving forwards. At the same time, the jet flow comes out more 

easily and therefore the machine gives more thrust. This means 

that the internal temperature changes. If the fuel inside the 

engine burns too hot the turbines melt; if it burns too cold the 

engine doesn't give enough thrust. So, as well as guiding the 

aircraft down the runway, the pilot has to juggle with the fuel 

flow to keep the turbine temperature just right. 
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Computers take to the air. 

Concorde has 8 on-board computers 

to help with navigation, 

communications and the control of 

cabin conditions like pressure, as 

well as control of the engines. 

Life is made much easier and safer for the dashing aeronaut - 

and for his passengers — if a computer takes over the whole job. 

It will have temperature sensors in the combustion chamber. It 

will measure the temperature and pressure of the outside air (a 

jet engine gives much less thrust at a hot, high airport like 

Khartoum in the Sudan than a cold, low one like Benbecula in 

the Hebrides). It will measure the forward push of the engine by 

measuring the pressure in the final jet tube. It will measure the 

fuel flow and the air speed, and the weight of the aircraft. With 

all these figures, the computer will calculate and deliver the 

right amount of fuel to the engine each second. Meanwhile, the 

pilot can concentrate on getting the passengers from A to B 

without alarm or dismemberment. 

Right — the man-powered Gossamer 

Condor was designed with the aid 

of a computer. Above - three 

dimensional representations of the 

plane from the computer's screen. 
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Tracking the traffic 

The latest generation of air-traffic 

control radar equipment being tested. 

Aircraft do not just appear as 

'blips' on the screen; their flight 

numbers and heights appear as 

well, as a result of signals coming 

from the planes themselves. 

Once in the air, our hawk-eyed friend rushes along at 600 mph. 

His brother bird-men, rushing at 600 mph - possibly in the 

opposite direction - have little chance of seeing him coming. 

If fate wills that their paths cross, an accident is almost inevitable. 

To prevent these mishaps, nations with brisk air-transport 

businesses provide an air traffic control service. This consists of 

a network of radars whose plots are brought to one or two central 

offices, where people well trained in mental gymnastics keep 

track of each aircraft and steer it round those other - invisible - 

aircraft that might bang into it. Usually they are successful; very 

occasionally they fail. 

In recent years, experiments have been made with automatic 
air traffic control - at least with the collision avoidance part. A 
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computer watches the radars, calculates the position of each 

aircraft, 5, 10, 15 minutes ahead and warns the controller if a 

collision (or a 'conflict' as it is known technically) is likely. The 

controller can then try out various decisions - if he orders 

aircraft A to turn 10 degrees to port and climb 500 feet to avoid 

B, will it now collide with aircraft K? 

The computing required to do this isn't easy. For a start, the 

blips on the screens as the radars go round and round have to be 

joined up with each other. They may deflect from the straight 

lines that you'd expect. The blip may disappear altogether from 

time to time; the computer has to be able to work out where the 

aircraft may have gone in the meantime so that when the blips 

reappear they can be attached to the right track. When two 

tracks cross, the computer must not think that two aircraft flew 

up to each other and turned round. On the other hand, if that's 

what happened, the computer must be able to follow it! It's no 

good the controller telling BA323 to turn left, when the blip he's 

looking at is actually KL96. This kind of predictive computing 

requires a powerful machine and well written programs. 

The search for 
Mr Right 

Computers are best at doing massive, highly defined jobs. One 

of the best examples is searching through a telephone directory 

to find a number. Of course, the computer needs to have all its 

information stored in its electronic memory and not on paper, 

but once the information is there it can search very fast indeed. 

It can even be asked to find a number when the exact spelling 

of the name is not known. Take Mr Bryzinski - or is it Brznski? 

Type in the name as accurately as you know it and a reasonably 

modest modern computer with the right program will find the 

number in a few seconds or will list out the alternatives. If you 

know an initial or part of his address it will then give you just 

the man you're looking for, his number and his address. 

Can you imagine a more redundant and costly source of 

useless information than the London telephone directory - 

nearly 4,000 pages of telephone numbers, many out of date and 

only a few of which you will ever look up? Not surprisingly, 

therefore, the French Post Office has proposed to issue every 

telephone owner with an electronic way of finding telephone 

numbers using a keyboard and a small screen attached to the 

telephone which can communicate with a central computer. 

1 They claim the costs will easily be borne by the savings in paper 

by not printing directories. Electronic directory enquiries enable 

other, usually impossibly tedious searches to be made. Knowing 

just an address could enable the user to find the name and 
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number of the owner of a house just as easily. Equally, a search 

for all the Dukes in London, involving looking at every entry, 

would take about half a minute. These last two searches would 

normally not be carried out for you for ethical as well as practical 

reasons by the human directory enquiries service. Yet the in¬ 

formation is there, publicly, in the telephone book. Looking for 

it using hand and eye might be a week's work; for the computer 

it's no bother at all. 

Home 'phone of the future? 

One prototype for the proposed 

all-in-one French telephone system. 

Besides the electronic directory 

enquiries service, subscribers will 

be able to send typed messages 

electronically and receive pages of 

information on the screen - rather 

like that on Prestel. 

Bars on the Have you noticed how soup and cornflake packets have started 

decorating themselves with smart patterns of black lines? They 

haven't joined some secret army - it's a way of identifying the 

goods using bar codes, in a way the computer can read with 

relative ease. How does it read the bar code? A simple optical 

wand, which looks like a fat biro attached to the computer by a 

wire, has inside it a light and a lens to focus the image of the bars 

on to an electronic sensor. As the shop assistant runs the tip of 

the wand across the bars, the sensing element detects the 

alternation of dark and light. The differing widths of the bars 

form the code of a number (which is often also printed at one 

14 



Bar codes on the groceries being 

'read' by passing them over a laser 

beam - which is faster and easier to 

use than a wand. The beam is 

reflected back to a photo sensor. 

The result for the customer is 

faster service and an itemised till 

slip - useful for next week's 

shopping list. 

side of the pattern). That number identifies the particular item 

to the machine. 

What's the point of all this? Well, it means that the owner of 

the shop can change his prices whenever he likes. Instead of 

having to employ people to go round - at great expense - to stick 

new labels on old tins of soup, he just tells the computer that the 

produce with the bar code '34217854' now costs 19p instead of 

17p. When the check-out girl reads that code into the machine 
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with a wipe of the wand, 19p will appear on the till and the 

customer's slip will have a full, printed description of what's 

been bought. 

The same effect could have been produced by asking the 

girl to type '34217854' - but experience shows that she'll just 

as likely type '34271854', which might be the code for nylon 

stockings at £1.12. 

Bar codes also make it possible for the shop operator to keep 

instant accurate records of what he has on his shelves. He can 

see instantly which lines are selling, and which are not. He need 

keep in stock only what he needs; in these days of high interest 

rates, shops make money more by cutting down their stock 

holding than by increasing their sales. 
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One idea for the future - a bar-coded 

Radio Times. 

A few wipes of the wand feed the 

computer in the special radio 

receiver with the menu of 

programmes not to be missed 

during the week. It then knows 

when to switch on and off. Note 

that the first part of each code is 

the same-it identifies the frequency. 
Right - how the light from the 

wand is reflected back from the 

bar coded 'finger prints'. 
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Computing the 
coughs 

There can be few experiences more unnerving than to hear a 

group of doctors gravely discussing your chest X-rays. 

The first holds the smudgy picture up to the light. 'Well, at 

least we needn't worry about the lungs. Clear as a bell.' 

'No, no, my dear fellow,' says the second, 'there are patches 

all over. Can't you see?' and his finger stabs at the film. 

'I wouldn't go as far as Charles,' says the third, 'but there's a 

very worrying shadow here.' 

An 'expert system' in a 

Scottish hospital. 

Left: A patient with acute 

abdominal pain is examined by a 

junior hospital doctor. 

Centre: The doctor's clinical 

findings are systematically 

recorded on paper then entered 

into the computer in a coded form. 

Note the doctor's judgement 

'?Appendicitis' and her note of 
the computer's diagnosis. 

Right: The computer compares the 

pattern of symptoms with a large 

number of earlier case histories and 

comes up with its likely diagnosis 

in this case, a 61% probability of 

appendicitis. 
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'Isn't that a rib?' asks the first. 'Anyway, who's going to 

Molly's tonight? It'll be quite a thrash.' And so it goes on. 

The analysis of X-rays is an art. Few experts agree with each 

other exactly what the smudges mean, and it is a high priority 

in medical computing to try to use machines to make sense out 

of what is now mere opinion. How would the computer do this? 

Firstly, it has to get the X-ray picture inside itself. This is 

not very difficult, using a TV camera or some other electronic 
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Diagnosis at the Toshiba Medical 

Centre, Tokyo. 

The X-ray image on the screen is 
built up by the computer, which 
holds a three-dimensional picture 
in its memory of the part of the 
body under investigation. This is 
generated by a low intensity, 
rotating X-ray beam. 

scanning device. The picture is effectively divided up into 

squares, small enough so that no medical feature is wholly inside 

any one. The intensity of the image in the square is coded as a 

number and stored in the computer together with details about 

the position of the square. This is a common procedure, generally 

called 'digitising' the picture. The squares that make up the 

picture elements are called 'picture cells' or 'pixels' for short. 

Once the image is in the computer's memory, the clever work 

begins. The computer rushes around the picture trying to con¬ 

nect up areas of light and dark to form an idea of the patient's 

body. It will have a good deal of medical 'knowledge', so that if, 

for instance, the X-ray is of someone's chest, it will look for the 

spine - a vertical bright line. It will look for the ribs, the collar 

bone and the shoulder blades. It will then turn its attention to 

the vaguer shapes - the lungs and the heart. When all these have 

been identified, it can then start to make judgments about the 

existence or not of 'shadows'. Programming the computer to do 

this last part may turn out to be rather difficult, since no two 

doctors can agree on what is a 'shadow'. The people writing the 

program may work the other way round. They could show the 

machine a lot of X-rays of people who certainly had TB, and let 

the machine work out for itself, by a process of trial and error, 

what there is in the pictures of the sufferers that is not in the 

pictures of the healthy. 

Of course, the problem with all these 'expert systems' (there 

are many others being developed) is that by definition they do 

not necessarily produce the same answers as a human expert. 

How is one to judge which is right - the human or the computer ? 
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Washday wonders 

The mechanical timing mechanism 

from a washing machine and (right) 

the silicon chip whose minute 

electronic circuitry carries out the 

same logical processes (and more) 

with greater reliability. Of course, 

the chip isn't the only component 

in the new version, so the 
comparison is a little misleading. 

If you listen to an old fashioned washing machine at work, 

you can hear it humming and ticking to itself - as well as thrash¬ 

ing the clothes around. The part that hums and ticks is a small 

clock which turns an elaborate series of cams which switch the 

various washing and rinsing cycles on and off. When your 

washing machine goes wrong, it is almost certainly this mechan¬ 

ism that has died. Modern machines will, one hopes, go wrong 

rather less often because they have a microprocessor controller. 

What does the microprocessor controller do ? Really, nothing 

more than the mechanical clock. It has an electronic clock that 

ticks away, and an electronic counter which counts the elec¬ 

tronic ticks and therefore the passage of time. You may want to 

wash a load of coloured clothes. The designers of the machine 

have decided that to do the job properly you need a five minute 

prewash, a main wash with seven minutes of tumbling once the 

water has got to 170°F, two hot rinses of five minutes each, two 

cold rinses ditto and an eight minute final spin. When you press 

the button, or turn the dial to select the 'coloured' washing 

program, a program organising this sequence is selected from the 

microprocessor's memory. The first command turns on the pre¬ 

wash water, and waits for the water height sensor to report that 

the tub is full. Water flow is turned off and tumbling starts. A 

counter counts ticks until five minutes have elapsed, and then 

the program jumps to the pump-out routine. When that is 

finished water is let in again until the tub is full, the heater is 

turned on until the temperature reaches 170°F and tumbling 

starts again. It goes on until the counter has counted seven 

minutes worth of ticks, and then the next stage happens. 
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The processed 
word 

) 

A box full of electric motors, cogs and switches is replaced by 

versatile electronic circuitry inside the machine. This means 

that the machine can do much more complicated things - if 

anyone wants it to - and that it can be cheaper and more reliable. 

Most people in the West now work at 'information handling' 

jobs, and quite a lot of them do boring, repetitive copy typing. 

There is no reason why a computer shouldn't help here, and this 

is just what a word processor - a specialised form of computer - 

does. Instead of typing onto paper, and then crossing out 

mistakes or painting them out with correcting fluid, cutting up 

the pages to get the paragraphs in the right order and retyping, 

perhaps half a dozen times, the principle of the word processor 

is that you type once onto a display screen, correct the mistakes 

on the screen and then when you are satisfied print out the result 

as many times as you like and store it away electronically. You 

can create a standard document, like a legal contract, with blanks 

for the names, type the names in once and print out a completely 

fresh personalised contract each time. Properly used, word 

processing saves many hundreds of hours' work. 

As well as this basic function of storing text so it doesn't 

have to be retyped, word processors have other advantages. You 

can try out different line widths. You can create spaces in the 

text for photos or drawings. You can produce columns of figures 

automatically and, in some systems, do the arithmetic to create 

the figures. You can merge two documents together to create a 

third, or pull in names and addresses from a file of customers to 

print out form letters - each addressed to an individual. 

When several people in an office are using word processors 

- or microcomputers running word processing programs, which 

is a cheaper way of doing the same thing - they can be linked 

together. Then, in a magazine's office, say, a reporter can write 

an article on his word processor and store it in the central file. 

The editor can call it up onto his machine to see if he likes it - and 

maybe change a few words, just to show who's boss. The sub¬ 

editor then looks at it on his word processor and corrects the 

spelling and punctuation. (He may well use a special computer 

program to help with this, which runs through the text, marking 

what it thinks are mistakes.) 

When the article is tidied up to everyone's satisfaction it can 

be sent by telephone line to the printers and read straight into 
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A word-processor in a 

modern office. 
Left: Text which can be edited 

easily on the screen is scanned for 

spelling mistakes. Each word is 

looked up in a 50,000 word 

electronic dictionary. 

Bringing it all 
back home 

♦ 

X 

their photosetting machines, so there is no need for the type¬ 

setters to do any retyping. 

Word processors could have uses in most offices and when 

they are linked together we will have the foundation of the 

'paperless office' in which people will communicate electronic¬ 

ally. Whether that will be better or worse than today's office 

systems, we shall have to see. 

The number and scope of technical terms in use has 9rown, 

too These language factors pose an entirely different 

r.hallenge rz the growing difficult* of producing correctly 

speiied Q99BESEB 

Rising quantities of SHBESbBI deceasing HBfli 

authors, and ESDI complexities have combined to maKe 

information bottlenecks more likely To make decisions, key 

people in your organization information H| 

availability of HH* accurate information might very will 

help Key people avoid making decisions based on outdated 

information, or take advantage of fleeting profit 

opportunities. 

* increased information volumes have been met 

by hiring additional typists, placing on payrolls 

and working space Today, {QEEEQEP|numbers of executives 

looking for text handling and display systems to help 

As we have seen, the computer is capable of an exciting and 

varied range of jobs surprisingly, perhaps, since none of this 

is particularly new. At any time during the last 10 years, a 

computer pundit could have told you something similar. What 

is new is the fact that jobs like these can now be done - in 

principle, at least - by a piece of equipment small enough and 

cheap enough to fit onto the desk or into the pocket. Computing 

used to be a very expensive, esoteric resource. Now it is being 

brought to the masses, just as cars brought travel, the telephone 

and telegraph brought communication and typewriters brought 

printing - of a sort. The microcomputer differs from the old, big 

computers in that it is cheap enough to be part of an individual's 

personal equipment to use how he or she likes. It may be used 

in the home or in the office or it may dissolve the distinction 

between the two, putting us back into a world of cottage in¬ 

industries where people work at or near their homes with their 

families and friends — and their homes can be anywhere in the 

world, thanks to satellite communications. 

Let us take a look, then, at what this versatile machine is 

and how it evolved. We need to delve quickly back into history 

to see just what computing is all about. 
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A little light 
history 

. . . 'Words are the daughters of Earth; 
things are the sons of Heaven 

Dr Johnson 

The Calculator's Progress 

a) The abacus, which appeared in 

China in about the 13th century. 

b) A replica of Pascal's calculating 

machine, 1642, which could add 

and subtract (unreliably), using 

a stylus to move the wheels. 

In computing, numbers are daughters of Earth, the tools with 

which ingenious man gets a grip on things. 
In the history of computing the first, and vastly the largest, 

step was the invention of the concept of number. Until man had a 

mental tool with which to represent this very odd abstract 

notion of the quantity inherent in a flock of sheep or a bunch of 

grapes or a crowd of people he could do no mathematics, no 

computing. 

c) Henry Sutton's spiral slide 

rule, 1660. 

d) Sir Charles Babbage (1791-1871) 

aimed to produce a machine 

which could be mechanically 

programmed to perform 

elaborate calculations. 

e) A part of Babbage's 'analytical 

engine', designed to multiply, 

divide, add and subtract, and 
even print out an answer. It was 
unfinished at the time of his death. 

Soon people began to invent devices to help with the manipula¬ 

tion of numbers. At the simplest level, if you want to know 

how many apples are left from a dozen when you've eaten 

five, you have to count on your fingers, and then if you eat one 

more you have to count all over again. Then some bright spark 

invents the device of 'subtraction' - a set of rules that can be 

applied to any two numbers. The idea of 'subtraction' is in 

essence a tool just like an adze or a plough - it increases the 

power of its user. 

Another clever person invented symbols on paper to repre- 
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f) The Gem Calculator (1890) could 

add up to £19.19s.1 ljd. 

g) The Comptograph (1900), an 

early commercial adding 
machine. 

sent numbers and showed how to manipulate them to carry out 

the rules of arithmetic, which was another computing device. 

It is well said in mathematics today that 'mathematics is notation' 

- when you have invented a name for one of the sons of Heaven 

and a way of writing it on paper you have a grip on it, you have 

turned it into a tool. 

The inventor of the abacus made the paper dynamic. Instead 

of having to write out a new line to represent each stage of the 

calculation, you flicked the beads about on the wires. They 

automatically did the boring parts of the sum, leaving you to put 

in the interesting parts. 

h) a mid-20th Century slide rule. The Seventeenth Century and then the Industrial Age produced 

i) Pocket calculator of the late 70 s. many devices for automating mathematics. Most notable of these 

j) of°i98aommable calculator/comPuter were probably those of Sir Charles Babbage - an inventive 
genius who is thought of as the father of the modern computer. 

Not long ago the calculator for the average student was a book of 

Logarithms or the slide rule but, only 10 years after the appear¬ 

ance of the mass-produced electronic pocket calculator, they 

now seem to be very crude and antiquated ways to automate 

the business of multiplication, division, raising to powers, 

extracting roots and doing trigonometry. 
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During the last War it was necessary to train all sorts of people 

quickly to navigate aircraft across the oceans or to calculate the 

fall of shells. Vast quantities of new and complicated tables were 

produced to automate the difficult calculations involved. They 

were produced by the first electronic computers - Colossus at 

Bletchley Park, Eniac in America and a Ferranti machine at Man¬ 

chester - which consisted of electronic devices counting on their 

invisible fingers (hence the term 'digital computer'). These com¬ 

puters were also needed to decode German and Japanese military 

signals which had been encoded by a machine called Enigma. It 

replaced each letter in a signal with another letter of the alphabet, 

choosing the other letter in a very complicated way. The first 

time round 'a' might be coded as 'q', the next time as 'b', next as 

'z' and then, perhaps, just as 'a'. The coding patterns were re¬ 

peated at very long and unpredictable intervals; to find when the 

pattern repeated, it was necessary to compare each chunk of each 

signal with other signals in the same series in the hope that some 

common phrase might have been repeated at just the right point 

to be coded in the same way. Having discovered such a link the 

codebreakers could then work backwards and forwards com¬ 

paring the coding of the dissimilar texts. Knowing the relative 

frequencies of letters in German they could often wrestle out 

enough information to set their own Enigma machine (or its 

representation in the computer) to the same code as the Germans 

were using at the time. 

These early machines filled whole rooms with radio valves 

to give the calculating power of a modern pocket calculator. 

Because there were so many valves, one of them could be counted 

on to burn out every few minutes, severely limiting the time 

during which a program could run. 

They were programmed at the crudest, lowest level, and 

were difficult to use. Not surprisingly a civil service committee 

reported after the War that there might be a use tor just three 

or four of these machines in this country. 

If the radio valve had remained the standard electronic 

device the computer would still be an esoteric curiosity. Happily, 

the transistor was invented in the late forties. Even then it had 

huge advantages over the radio valve for building computers: 

it was very much more compact, used low voltages and small 

amounts of power. Since then, steady improvements have been 

made in the way transistors are constructed. 

These improvements led to the first integrated circuit, 

in which a number of transistors and other electronic devices, 

together with the wiring that connects them, are manufactured 



A section of Colossus I. 

the first successful electronic computer, which started work in December 

1943. It was used by cryptoanalysis experts at Bletchley Park during World 

War II. Note the banks of valves. 
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The Eniac computer 
also of World War II - at the University of Pennsylvania - gives an idea of 

the size of these early electronic machines. 
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The thermionic radio valve - now 
almost extinct. 

in one piece. Development of this technology led to the silicon 

chip, in which huge numbers of these devices are today packed 

onto a tiny sliver of silicon only about a quarter of an inch square. 

The course of computing since the War has been the result 

of two forces. First, as transistors got smaller and more of them 

could be put on a chip, so computer designers used more and 

more of them to make the machines bigger and more powerful. 

Secondly, the same tendency made it possible to build a smaller 

and cheaper computer of the same power as those early com¬ 

puters. Indeed over the last decade the real cost of computer 
power has halved every year. It is now so cheap that computing 

can be considered a revolutionary technology. The result has 

been a wide range of computers. Today they fall crudely into 

three groups: mainframes, minicomputers and microcomputers. 

Single transistors of the 1950's - 

based on germanium. 

The integrated circuit — thousands 

of transistors on a single chip 
of silicon. 

The cost of computing 

1950 - £1,000,000 1960 - £100,000 + 
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The big, 
the middling 
and the small 

/W ^ ; i > t 

A mainframe computer is a large machine costing at least several 

hundred thousand pounds, which has to be kept in a specially 

constructed building and has a large attendant staff of operators, 

programmers and analysts. Originally all electronic computers 

were like this: today only a relatively small proportion are. The 

modern mainframe computer is a very powerful machine which 

can handle the very large volumes of work needed in some large 

companies, or very complex calculations like those required for 

the Inland Revenue, or the weather predictions we talked about 

at the start of this chapter. 

In the sixties the processing capacity of mainframes outgrew 

the handling capacity of single input/output devices, and the 

techniques of 'timesharing' were introduced. A timesharing 

machine has a number - perhaps more than 100 - of terminals. 

The person sitting at each terminal has the use of the central 

computer for a few thousandths of a second from time to time, 

but the machine is so fast that it can respond to each user as if he 

had the sole use of the machine. 

Unfortunately for the future of timesharing, the user often 

has to communicate with the central computer down inefficient 

28 



telephone lines - which make his access very slow. So much so 

that very often the user of a small personal computer will get 

easier and faster computing than the user of a terminal connected 

to such a mainframe. Since this kind of machine is designed to be 

used by computer professionals, it is generally quite a tough 

business to make it work. 

A mini is a smaller computer, costing some £10,000 to 

£100,000. It may also allow timesharing, but is a less demanding 

device which usually does not need a special building or the 

services of more than a couple of specialists. Of course, it also 

has less power and capacity than the larger machines, but the 

power at its disposal is sufficient for a wide range of commercial 

and scientific applications. 

A microcomputer is much smaller and cheaper again - so 

cheap, in fact, that each user can afford to have his own machine. 

Since much of the rest of the book is about microcomputers, we 

will not say anything more about their physical characteristics 

here. However, there are some things worth saying about their 

cultural impact. 

Left: A modern mainframe 

computer with enormous 

computing power. 

Centre: A mini computer suitable for a medium size company. 

Right: A micro computer with plug-in program cartridges. 

All three computers work in basically the same way. 

29 



How the 
microcomputer 
is changing 
the world 

The appearance of the personal microcomputer, which puts an 

impressive amount of computing power on the user's desk, under 

his completely personal control, is having a profound effect on 

the culture of computing. 

The state of computing now is very much like that of printing 

and book publishing at the time Gutenberg and Caxton first had 

their printing presses up and running. Before that, book making 

was a very big performance indeed. It was carried out very 

slowly, by hand, in monasteries, at great expense. Only dukes 

and kings could possibly afford to have books made and because 

dukes and kings spent all their time fighting in order to stay rich, 

many of them had no time to learn to read. When they'd got their 

Book of Hours or Life of St Jerome, it was of no use to them in 

the way we would find a book. They couldn't curl up with it for 

a good read by the fire before going to bed. 

Of course, they didn't want books for that. They com¬ 

missioned them first of all because, by doing so, they kept in 

with the people who controlled the actual executive power of 

the state. Secondly, books were commissioned because they were 

magical and prestigious treasures which contained the laws and 

scripture that controlled ordinary illiterate men's lives. 

The alert reader will detect an intended similarity between 

this description of books and the big computer programs and 

installations of our day. Books were commissioned by people 

who couldn't read and were made in remote monasteries at vast 

expense. Computer'programs are commissioned by managers 

who are unable to understand them and written in remote offices 

belonging to companies like IBM and ICL. 

This analogy can be continued with the printing press which 

can put identical, cheap text into the hands of everyone who can 

read. Imagine Caxton printing the obvious thing - the Bible - 

and then some Royal proclamations and a tide table or two, and 

is standing at the door of his shop twiddling his thumbs and 

worrying about cash-flow when who should walk in but the 

author Mallory with the Morte d'Arthur - a cracking good yarn 

of tin-clad folk - under his arm, and Caxton is off into a whole 

new industry - book publishing. 

This is very much like the computing business again. The 

microcomputer is like the printing press that puts computing 

power - literature - into every literate hand. The Bible is the 

obvious book to print because it has been handwritten in large 

numbers. There's a market for it. It corresponds to the payroll, 

stock control and word processing program packages that 

inundate the microcomputer world. However, having produced 
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The old and the new Latin; 

incomprehensible to the layman 

but giving power to those in 

the know ? 

those, the microcomputer market is twiddling its thumbs, looking 

for something which as yet hardly exists - the computing 

equivalent of Mallory with a novel under his arm, and a whole 

new industry in the offing. In fact he is emerging here and there 

and no doubt in 50 years time historians will be able to point to 

our very own data processing Shakespeare whom nobody 

recognised till much later. 

One can see how things were in 1477 when Caxton had 

just started. The monks from the monasteries were saying that 

ordinary people would never learn to read, that books needed 

individual attention and that any suggestion that a book - a real 

book - would ever cost less than 100,000 crowns was the most 

irresponsible folly. Well, the printed word and mass literacy 

caught on quite well, and produced many changes in the then 

world that no-one foresaw - among them being, perhaps: the 

decline of Latin, the rise of national languages and nationalism, 

public opinion, mass marketing, bus tickets and other advantages 

too numerous to mention. 

There are some people who think that the mainframe com¬ 

puter with its hordes of salesmen, computer scientists, systems 

analysts and applications programmers is as doomed as the monks 

from the monasteries doing their gold leaf illuminated letters in 

the quiet cloisters at the cost of an arm and a leg a volume, for 

battle-hardened clients who could hardly sign an 'X' at the 

bottom of the contract. It will be interesting to see what changes 

its successor brings about in our modern world. 
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loop-stack pointer storage location, are set up corr 
to send Xtal?s original routines on a tour of our 
the beginning of the IF-.-THEN statement, so we do i 
By changing the contents of 1812 HEX to: JR INIT, 
called, control first passes to a new INIT routine w 
the counters and sets up the stack pointer. 

INIT, PUSH HL., DE, BC, AF 
LD DE,0E7AH 
LD HL,TABLE 
LD BC,06 
LDIR 
PGP AF, BC, DE, HL 
JP Z 1416H; The? jump in Xtal ’ s RUN routine 

which we replaced with the jump 
to INIT 

JP 1815H; Jump back to Xtal’s RUN 
TABLE,7AH OEH OO 00 00 00 

As I said at the beginning, the purpose of this art 
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What does it do 

and how does it 
do it? 

'Canomorphic hardware with 

interactive anthropomorphic 

software' - new Latin for 'K9' 

from 'Dr Who?' 

Some people have a 'science fiction' view of computers - they 

think that they have an intelligence of their own, and if we're 

not careful, will eventually take over the universe. In fact, the 

opposite is true. The computer is a very stupid device. All it does 

is execute, with the minutest precision and at great speed, the 

instructions it has been given. It has no way of telling - except 

through further instructions written into it - whether what it is 

doing is sensible or foolish. It has no mind in the human sense; 

it has no more mind than a lawn mower. 

There is 'intelligence' in what the computer does - but that 

intelligence is provided by its instructions, and by the human 

being who writes those instructions. The computer is just a tool 

which the human uses for carrying out his computing activities. 

As we saw in our quick historical review, computing is nothing 

new, though the electronic computer as a tool for computing is 

still a novelty to most of us. 

What can this tool do ? This depends on what we ask it to do 

but, basically, all its functions are built up from a few very 

simple activities. The most important are that it can: 

add two numbers together; 

subtract one number from another number; 

compare two numbers or symbols to see if they're the same. 

What use is that? You might well ask. In fact, a lot of use. It is 

because the machine can do such a tremendous number of these 

very simple things in a short time that it can be used for such a 
wide range of applications. When we come to look at the parts 

of the computer, we'll be able to give you some examples of this 

speed (see page 47). 

Building up 

the skills 

First, one example of the way these simple operations - adding, 

subtracting and comparing - build up to make real-life computer 

applications. Remember our search for Mr Brznski (page 13)? 

The computer could find his telephone number by comparing his 

name, letter by letter, with every name in the telephone book. 

We're dealing with letters - so how do numbers come into it? 

A simple scheme might go something like the one described 

below. 

Each letter is stored in the computer as a code number. 

Suppose for simplicity A is 1, B is 2 and so on. The first name in 

the telephone book might be 'AAA Minicabs'. The computer's 

program would tell it to take 'Brznski' and compare the code for 
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its first letter (2) with the code for the first letter of the first 

entry (1). Its instructions would be to take each name in turn 

and compare the codes until the two first numbers were equal 

(then it would have found the Bs). Its next instruction would be 

to compare second letters (R might be 18) until they were 

identical (which might be for 'BRAACHEN') and so on, until all 

the word matched. Only then would it print out the result. It 

sounds tedious but it's actually very much like what we do when 

we look up a number except we don't bother with code numbers 

and we take short cuts because we know that B is near the 

beginning of the alphabet and R is two-thirds of the way down it. 

This job of comparing symbols is one that the computer does 

frequently, particularly when it is processing text. It is unfor¬ 

tunate that we think of computers as being about mathematics 

because in real life they spend most of their time comparing parts 

of words to see if one is the same as another. After all, this is 

what our brains spend a lot of time doing. If someone says 'Meet 

me at the Festival Hall' you have to compare the word 'meet' 

with a dictionary in your head until you find the right word and 

discover that you are meant to 'come upon, fall in with, find' 

(OED). A similar procedure is used with the other words - in 

particular 'Festival Hall', which obliges you to look up some kind 

of map in your head or on paper telling you how to get there. 

From time to time, mathematics is called for. The mathemat¬ 

ical abilities of the computer have to be built up from the same 

simple tricks: addition, subtraction and comparison. Later, we 

shall see how the computer combines these operations at great 

speed to enable it to do very complex calculations. 

From electronics 
to counting 

You are probably wondering by now how a computer actually 

carries out these operations, and why it treats numbers and 

letters as being just the same when, to us, they are quite different. 

To explain some of this, we must first go back to look at elec¬ 

tronics, and find out briefly what it means. 

Electronics involves electricity. In a computer, information 

is sent as patterns of current down the wires and through the 

transistors and other devices in the electronic circuit. These 

patterns can change hundreds of thousands of times per second 

as the currents go on and off - and that is the secret of the com¬ 

puter's speedy operation. 

In fact, the patterns make up the basis of the computer's 

numbering system. Each part of the pattern is called a 'bit'. We 
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do most of our arithmetic on a numbering system based around 

10 - the number of our fingers. We count up to nine, and then 

use the tenth digit to 'carry one' over to the left. Using pulses of 

current the computer can only count up to one! In fact it has two 

options: a pulse of electricity, or no pulse. To the computer, 

that's a 1 or an 0. Os, in this system, become very important. 

It's binary! 

Two real life examples of 'binary' 

patterns - where something can be 

in only one of two states. Right - 

each traffic light can only be 'on' 

or 'off'. Left - Well-disciplined 

Soviets hold their cards up one way 

or the other to create the mascot 

'Mischa' at the opening of the 

Olympic Games in 1980. 

DECIMAL 
BINARY 
EQUIVALENT 

0 
i 

0 
i 1 

2 
i 

10 
3 11 
4 100 
5 101 
6 110 
7 111 
8 1000 
9 1001 

10 1010 
11 1011 
12 1100 
13 1101 
14 1110 
15 mi 
16 10000 

The numbering system, based on Is and Os, is called 'binary', and 

this is how it works. We start off just like we do in decimal 

counting: 0, 1. Then we have to 'carry one' to count any further, 

so 2 in decimal becomes 10 in binary, 3 becomes 11, 4 becomes 

100 and so on. Try working out for yourself what 10100 and 

110011 in binary would stand for*. The computer can manipulate 

these binary numbers just as we manipulate our decimal num¬ 

bers, adding and subtracting them in the same kind of way. For 

human beings, it's hard work, though, as you will find if you 

try it. So you will be glad to know that, except in special cases, 

you should never have to use binary in talking to the computer. 

*(10100 is 20; 11011 is 51). 
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Two binary 'bit' patterns -for the 
numbers 162 and 220. 

Inside the computer a T means 
that there is a 5 volt supply to a 

particular part of the circuit; '0' 

means no voltage at all. 

Series and parallel: two ways in 

which binary patterns can exist in 
the computer. 
In 'serial' form the patterns appear 

as a stream of 'on's' and 'offs' one 
after the other - rather like the 

pulses of current produced by the 

electrical circuit shown (a). In 

'parallel', eight values can exist 

simultaneously along eight parallel 

circuits similar to the circuits 

shown (b) 

JUl_TL 
10100010 11011100 

As well as calculating in binary numbers, the computer also uses 

binary codes to represent the rest of the characters on a standard 

typewriter-type keyboard. In the chapter on programming 

(Chapter 4) we show how the computer tells which groups of Is 

and 0s it should treat as characters, and which as numbers. 

Some of the codes representing 
letters and other characters 

in the computer. 

These are in a sense arbitrary but 

there is an internationally agreed 

convention - known as ASCII the 

American Standard Code for 

Information Interchange. 

CHARACTER NUMBER BINARY CODE 

B 66 01000010 
I 73 01001001 

T 84 01010100 
; 59 00111010 
i 63 00111111 
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What is the 
computer 
made of? 

All computers consist of the same fundamental parts, whatever 

their size: 

1 Input devices which take in information from the outside world 

and convert it in one way or another into the binary code which 

the computer can cope with. For example, a switch, a keyboard, 

a microphone or a temperature sensor - each could be an input 

device and the computer might have one or a number of them. 

2 A memory - which can store information from outside, including 

the instructions which have been given to the computer. These 

are called its program (usually spelt with one 'm'). 

3 A central processor, which acts as the 'brain' and processes the 

information in accordance with the program of instructions. 

4 Output devices which receive the messages from the computer 

and do something useful with them: it could be by producing 

messages on a television screen or a printer or operating a motor, 

a loudspeaker or a heater (as in a washing machine). 

The memory The memory is just what it says: the place where the computer 

keeps information when it is not actually working upon it. We 

can think of it consisting of several thousand 'letter boxes' or 

'pigeon holes'. Information is held there as bits of electric charge. 
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In a particular spot in the computer there either is a charge or 

there is not, so it's for this reason that computers understand 

binary code - 0 means no charge, 1 means a charge (analogous 

to morse code, except that whereas morse consists of patterns of 

dots, dashes and gaps, binary information consists only of 

patterns of dots and gaps). Some of the patterns represent num¬ 

bers, as we have seen, and some can represent characters. The 

memory can store numbers and characters and these can be 

fetched by the processor. Each Tetter box' has an address, which 

is also a number. The processor (see below) can connect itself to 

any particular memory location - a particular letter box - by 

specifying its address. 

In most microcomputers, there are 65,536 memory locations, 

with addresses going from 0 to 65,535. Why this exact number? 

The answer is that most microcomputers deal in chunks of 

information eight binary digits, or 'bits' long. Eight bits is called 

a 'byte', and has become the standard computing unit of in¬ 

formation simply because it fits conveniently into several 

different uses. One reason is that you can easily code the 

characters of the keyboard using 255 symbols and 255 is the 

decimal number which is equal to 11111111, the highest number 

with eight digits in binary. 

Two bytes, when used together as an address for the com¬ 

puter's memory, give 28 x 28 = 216 = 65536 different numbers, 

and that is how many memory locations the ordinary micro¬ 

computer can cope with. (The obvious next step would be to 

have three address bytes, which would give 28 x 28 x 28 = 

224 = 16,777,2 1 6 locations.) 

If we think of each memory location as keeping its stored number 

on an ordinary postcard then all the postcards, laid end to end, 

would stretch out for nearly five miles. 

The processor can connect itself to any one of these 65,536 

boxes. It can 'write' electronically onto the card there, or 'read' 

back the number that was written last time, in a quarter of a 

millionth of a second. In other words, it can read every number 

in every address of its memory in a sixtieth of a second. It's this 

speed that makes the very simple things a computer does useful: 

it can do such a tremendous number of them in the time it takes 

you to blink. 

Each individual memory location has a capacity of eight bits 

(in the normal system used by microcomputers). So it, too, can 

store numbers up to 255. If the computer needs to store larger 

numbers, or anything else which doesn't fit, it has to use several 

memory locations for each number. 
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We have talked about the computer using pulses of electric 

current to indicate its Is and Os and that it manages to store this 

information in a memory. Inside the memory the information is 

held as minute charges of electricity. Unfortunately, the system 

only works when the computer is switched on. When it is 

switched off, the information is lost and consequently different 

types of memory storage are needed to hold information which 

the computer needs to keep (or you, its user, need to keep) for 

longer than it takes to run a program. We look at these different 

types of memory on page 87. 

The processor The processor has a lot inside, but in essence it is just like a 

black box which takes numbers or characters from memory and 

operates on them using instructions also taken from the memory, 

such as 'add', 'subtract' or 'compare'. After that it sends the 

results back to the memory or elsewhere. 

A crucial feature of the processor's relationship with memory 

is that it can use the number stored in any location either as data 

or as instructions. The difference between them is quite simple: 

the instructions tell the computer to do something, the data is 

what it does it with. This gives the programmer (if he is working 

directly in the computer's binary codes) a great deal of freedom, 

and allows him, for instance, to write much bigger programs than 

can fit into memory at one time. He can do this by writing a small 

bit of program that tells the processor to take the new bits of the 

main program from a storage device and put them into memory. 

Once in the memory, they can be treated as instructions working 

on the data in other bits of memory. 

Silicon chips We are talking glibly about the processor and the memory - but 

what are they? What do they look like? In a modern computer 

they are likely to consist of one or more silicon chips. A chip 

is a piece of silicon a quarter of an inch square, covered with very 

fine metal connections joining together thousands of transistors. 

It is hermetically sealed in a plastic case usually with 40 metal 

legs, so it looks like some sort of mechanical centipede. In today's 

microcomputer each memory chip generally holds 16,384 bits, 

so the 65,536 bytes of a complete memory takes 32 such chips. 

It is important to remember that a microcomputer is the total 

package. It will usually consist of a board containing the silicon 

chips and various connecting bits and pieces. It will have a 

means of inputting and outputting information, from one or a 

number of input and output peripheral devices. It may well be 

as big as a couple of electric typewriters and cost anything up to 



The chip exposed: 

Top left: A memory chip fully 

packaged (about 2 cms long). 

Top right: Looking down on the 

chip itself after the outer plastic is 

removed. Note the fine gold wires 

which connect the chip to the 

centipede-like electrical connections. 

Below left: Microscopic view of the 

minute electrical components which 

make up one quarter of the chip. 

Below right: An electron 

microscope's view of just a few of 

the individual transistors 

(magnification x 2040). 

£4,000. The microprocessor in this case is just the main chip. It 

weighs perhaps an ounce and costs around £5. If the micro¬ 

processor is the main chip in the typical microcomputer, it is also 

possible now to produce virtually the whole microcomputer on 

one single chip which contains within itself the processor and 

the memory and a good deal of the input and output electronic 

circuitry. Such chips have particular programs of instructions 

'burned' permanently into them so that they can be dedicated to 

doing particular tasks - like controlling a model train or a wash¬ 

ing machine. The 'dedicated' microcomputer chip is likely to 

find its way into a vast range of domestic, industrial and com¬ 

mercial equipment - from the television game to the latest tea¬ 

vending machines to the computer in next year's car. 
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'Mass' or 'backing' storage. 

Right: Large magnetic tapes of a 

mainframe computer. 

Below left: A hermetically sealed 

'hard disc' unit with a mini 

computer. 

Centre: Hard discs in safe keeping. 

Right: 'Floppy discs' and cassette 

tapes, used by a typical 

microcomputer. 

Mass storage A most important part of a microcomputer is its 'mass' or 

'backing' memory storage. This plays the same part in its 

organisation as a filing cabinet does in an office. You can keep 

programs and data in the backing store in the same way as you 

would keep documents in the filing cabinet. Whenever you need 

a particular reference you go to the cabinet and get it out on the 

desk. Whenever you need some information in the backing 

storage, you connect it to the computer so it can act as part of 

the machine's memory, ready for computing to be done. 

Unlike the computer's internal working memory, the in¬ 

formation kept in backing storage is retained even when the 

storage medium is not connected up to the computer, or when 

the computer is switched off. That is one reason why every 
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computer that is going to act as more than a quick calculator 

needs to have some form of backing storage available. The other 

reason is that the computer's internal 'working' memory is not 

large enough to hold all the data the computer needs to work on, 

so it needs to be able to keep it in this external reservoir. The 

low-cost microcomputer uses a low-cost backing store, which is 

almost always cassette tape in a standard cassette recorder. The 

advantage of this is cheapness; the disadvantage is slowness. 

To get at a particular program or file of data you may have to 

reel through 15 minutes of tape, which is tiresome and not at all 

practicable for any kind of serious computing, although it's fine 

for the beginner who isn't in a hurry. 

'Serious' microcomputers use 'floppy discs' which are rather 

like gramophone records covered with the same magnetic 

material that coats a cassette tape. The floppy disc is slotted into 

a disc drive where it is spun at several hundred rpm while a 

read/write head is moved over it from edge to centre. By putting 

the head in the right place, the data in that 'track' can be read in 

a few thousandths of a second. The floppy disc is a much more 

manageable way of storing data than a tape, because any chunk 

of data on it can be retrieved in - typically - about one-fifth of 

a second. 'Floppies' come in two sizes - 'mini', which store 

between 80,000 and 500,000 characters and 8-inch which store 

between 250,000 and half a million characters (remember: six 

characters go to the average text word). 

A recent development is the Winchester or 'hard disc'. In 

this system the disc is fixed in the machine, which means that 

all the mechanical clearances can be much smaller. By this 

method the head can get closer and write much smaller patterns 

of magnetism onto the surface, and so an 8-inch hard disc can 

store up to eight million characters a side. Because all the 

clearances are so small, and therefore there's no room for dust 

and fluff, the disc has to be hermetically sealed. A hard disc 

system small enough to fit into a desk drawer can hold a maxi¬ 

mum of 140 million characters - equivalent to about 11 years 

non-stop typing, eight hours a day. 

Input Getting information into the computer system essentially means 

converting information in one form into electronic signals that 

can be recognised by the computer. The most popular method 

of getting information into a computer is through a keyboard. 

This bears an external resemblance to a normal typewriter key¬ 

board, except the depression of a key causes a series of electronic 

pulses to be sent to the computer. The keyboard can be part of 
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A touch sensitive keyboard in a 

computer costing less than £100. 

When the keyboard is pressed, 

electrical contact is made between 

two thinly separated metal 

connectors as they are squeezed 

together. 

INPUT 

the computer housing, or a separate unit, usually with an attached 

video screen or a printer. In fact, the first keyboard units were 

based on the ubiquitous teletype that, in one form or another, 

provided telex links throughout the world. 

The cheapest method of producing a keyboard is to have 

two layers of plastic with a conducting membrane in between. 

The most expensive use highly sophisticated electronic, and even 

ultrasonic methods. 

Most keyboards have the usual 'QWERTY' layout, and are 

capable of producing both upper and lower case letters. Some 

smaller keyboards look like calculator pads, and are usually used 

to enter data and instructions in the computer's binary code. 

There are other methods of getting information into the 

computer. The most obvious is to connect it up to the electrical 

impulses produced by the electrical or mechanical system being 

controlled. This is how most industrial computer systems get 

their information. Sensors in the system convert mechanical or 

environmental data - like temperature, displacement or speed — 

into electronic signals that the computer can deal with. We saw 

this type of operation in several of the applications we described 

at the start of this chapter - for instance, in the sensors that 

measured the temperature and pressure for the jet engine and 

the water level for the washing machine. You will recall some 
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of the other input methods that turned up in those examples, 

too: the optical wand that reads bar codes, the camera that scans 

X-ray pictures and so on. 

Another method of putting in information is by using speech 

recognition. We look at this (and at speech output) in Chapter 6. 

There are also input devices which will accept hand-writing, as 

A 'graphics' tablet. 
Wherever the pen touches the 

writing surface, detectors in both of 

them register exactly where it is 

and tell the computer the 
co-ordinates. It can then use the 

information to store or reproduce 

what has been drawn in some 

electronic form. 

you write, or pre-typed or printed pages. There are 'graphics 

tablets' which let you draw with an electronic pen. There is also 

something called a 'light pen' which lets you draw on the surface 

of the television screen directly. You have probably heard of the 

punched cards, or paper tape, which were used to input in¬ 

formation to mainframe computers. These are out of date today, 

however, and increasingly little used. 

Output 

Our put 

There are just as many ways of getting information out of the 

computer, including many different sorts of actuators that make 

the computer directly control operations. For the microcomputer 

user the video display unit and the printer are the most common. 

The video display unit 
The video display unit - or VDU - can range from the domestic 

television set to an 'intelligent' terminal that has one or more 

microprocessors inside. A screen that can display 25 lines of 40 

characters can hold up to 1,000 characters of information. It takes 

memory to store this. In so-called 'memory mapped' systems, 
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A high resolution graphics picture on 

the screen, made up of small picture 

cells or 'pixels' (reminiscent of the 

Russian bear on page 34). 

each character position on the screen corresponds to a particular 

memory location in the video memory. All the computer does is 

transfer the contents of the memory onto the screen. As each 

memory location can store one byte - of eight bits - this means 

that 28 or 256 different characters are available. The codes in the 

memory are interpreted into actual letters and graphic symbols 

by a device called a character generator. Needless to say, all this 

memory detracts from the amount of memory available for use 

in the system by the user. 

Another method of generating video information is to split 

the screen into a series of separate points, say 312 x 210. This 

requires more memory. Each point on the screen now corres¬ 

ponds to one bit in the memory, hence eight points require one 

byte of memory; 312 x 210 points therefore need 8,000 bytes. 

This high density graphics capability is available on a num¬ 

ber of computers. It is a useful facility for educational users and 

for games and hobbies but, unless complicated graphical analyses 

are needed, is not really necessary for business use. 

Printers 
There are many different types of printer available for computer 

users. These range from simple printers from £50 to those of a 

standard word processor at about £2,000. 

One way of generating good quality printed output is to use 

a converted electric typewriter. Sometimes systems using these 

will allow the keyboard to be used to enter information as well. 

A teletypewriter is electromechanical in construction, with a 

keyboard for input and an impact printer (a type cylinder) for 

output on paper which is stored as a roll in the machine. The 

speed is modest, usually 10 characters a second. Other disadvan¬ 

tages are that the machine is loud and usually only prints 

capitals. However, secondhand teletype machines can be bought 

quite cheaply. 

Another method of producing characters on a page is by 

printing dots based on a 5 x 7 matrix. Most characters and 

graphics symbols can be generated in this way. The simplest dot 

matrix printer consists of seven needles in a vertical line that are 

'fired' onto the paper as the head moves from left to right. Five 

such 'firings' are needed to produce each character (see p. 95). A 

normal typewriter ribbon means that normal paper can be used. 

It is possible to do quite complicated characters with dot matrix 

printers as each needle can be programmed individually. If the 

computer used has a graphics capability, a dot matrix printer 

must be used otherwise these characters will not be printed. 
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A cheap dot matrix printer 
capable of reproducing text and 

graphics. (For a diagram of how it 

works see page 95). This kind of 

printer is ideal for all but work 

demanding the printing of high 

quality text. 

A 'daisy-wheel' printer 

which produces high quality print 

at over 100 characters per second. 

If good quality output is required then a specialised printer 

is necessary. The 'daisy wheel' printer is a form of impact 

printer that has all the characters around the rim of a circular 

plastic disc. A hammer hits the appropriate character to produce 

the printed symbol needed. These are rather expensive when 

compared to other sorts of printers but give good quality at high 

speed. The print head can be changed to give different typefaces. 

Most daisy wheel printers can be programmed so that right and 

left justification with proportional spacing is available. They are 

designed for word processing applications (see page 20). 

All the printers mentioned use impact technology, and rely 

on ink coming from the typewriter ribbon to create the image on 

paper. They also use normal paper. There are other ways of 
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getting image onto paper and some printers use these methods. 

Heat sensitive paper is used by a number of small printers. 

These usually have about 40 characters per line. A small dot¬ 
matrix heating element moves across the paper and where a hot 
spot is created a blue dot appears on the page. They are quick 
and, because there is no impacting, very quiet. The paper is 

rather expensive, however, and is usually only available in 

2-inch to 3-inch wide rolls. 

Architects and designers use 'plotters', another special form 

of output which lets the computer draw like a draughtsman. 

At the top end of the market are 'inkjet' printers which spray 

a fine jet of ink particles at the paper as it travels past. They are 

silent and very fast and many suspect that the Japanese will soon 
produce cheap versions to replace the more popular mechanical 

printers being installed in offices at present. 

A complete 'up-market' desk-top 

microcomputer system. 

Small plug-in cassette tapes are 

used to store programs and data. 

The high resolution graphics on the 

screen can be reproduced on paper 

using a built-in 'thermal' printer. 
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How fast 
is a computer ? 

So far in this chapter we have put a lot of stress on the fact that 

although the basic operations of a microprocessor are very 

simple - add, subtract and compare - its overall effect is quite 

clever simply because it works so fast. 

In about the time it takes for one 

stroke of the typewriter a small 

computer would be capable of 

searching through the electronically 

stored version of this dictionary, 

performing half a million steps. 
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It takes about eight seconds to multiply two 16 digit numbers 

together a thousand times. A typical spelling correction program 

would look for a word in a 25,000 word dictionary held on 

floppy disc, and report whether it was there or not in about 

one-fifth of a second. That is many times faster than a human 

being could do the same job. Try timing yourself. On the other 

hand, a human wouldn't bother to look up most of the words 

because he or she would know by looking at them whether they 

were rightly or wrongly spelt. 

It is not hard for a careless programmer to squander pro¬ 

cessing power so that his program ends up taking a long time to 

do apparently simple things. The slowness comes because the 

computer spends most of its time working out what the pro¬ 

grammer wants it to do, rather than actually doing it. However, 

the personal computer doesn't have to work very fast: most of 

the time it's waiting for its user to type something at the key¬ 

board. 

An expert typist can work at 100 words per minute: that's 

about 600 characters per minute, or 10 characters per second. 

In the time it takes to type one character the processor can carry 

out nearly half a million steps. However, in many cases the speed 

of a microcomputer is not of crucial importance. Mainframe 

computers cost so much that processing time - 'Mill-time' as it is 

called in the trade - is rather important. If your program takes 

too long to run you are wasting an expensive piece of capital 

equipment. Since a microcomputer is relatively cheap and has, 

usually, only one user, these considerations do not really apply. 

The question is: 'Would I rather do the job by hand?' and the 

answer is often 'No'. 

What jobs can we - actual or potential users of personal 

computers - decide to do on our computers, though? That is a 

question we start to look at in the next chapter, when we consider 

problem solving on the computer. 
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Problems and 
computers 
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Behind each of the applications of computers we described in 

the last chapter there lies a problem - for example: 

1 How to make sure that aircraft jet engines run at their highest 

power setting for take-off without overheating. 

2 How to develop a cheaper, quicker way for people to find 

telephone numbers without having to issue every household 

with a fat directory. 

3 How to link supermarket sales with warehouse stocking so that 

stock levels are kept as low as possible without ever running 

out of a product. 

These are clearly sizeable problems for British Aerospace, or 

British Telecom or for Tesco's, let alone for us, so what about 

including some simpler problems to look at? For example: 

1 How to produce something for testing a child's multiplication 

tables which allows the child a number of'goes' before giving the 

right answer. 

2 How to draw up a fixture list for local league football, so that 

(as far as possible) each team plays every other team - both at 

home and away - and the teams play at home and away alternate 

weeks, each team having a fixture every week. 

3 How to tune a piano. 

4 How to find the best route between London and Godminster. 

5 Controlling a greenhouse. 

Perhaps the computer could help in all of these - we shall see. 

However, we shall start not by looking at the computer at all 

but at the nature of the problems and at the ideas and techniques 

of problem solving. Then we shall see if the computer fits in and 

in a later chapter go on to solve one or two of the problems with 

the aid of the computer. 

What do they have in common, that makes us describe them 

as problems? Not very much, you may think. But they do all 

have three basic elements: 

1 We have some basic facts about each problem, which define it 

make it unique. We understand, at least broadly, just what the 

problem is. Take that first problem, for instance. We already 

know we're talking about: 

jet engines 

aircraft take-off 
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Solving the 
problem 

PRoeueH 

the need for the highest possible power setting 

the need for safety 

the danger of overheating. 

2 There may not always be one perfect answer which completely 

solves the problem. 

3 There is a gap between the problem and the answer. We don't 

already know the answer, or there wouldn't be a problem. 

Sometimes, admittedly, the gap is so small that we hardly think 

of the problem as a problem at all. It may be a problem to choose 

the best route to Godminster, but it's not difficult to choose the 

route we'd take to call on our next door neighbours. Or is it? 

We might go from our front door to their front door, our back 

door to their back, or even squeeze through the hole in the fence. 

If we're planning to burgle them, we might opt to go through the 

kitchen window. Perhaps even that problem takes a bit more 

thought than first seems likely? 

So much for the problem - what of solving it? In everyday 

language we use the word solution to mean two quite different 

things. 

1 Sometimes we mean the answer to a problem. So, the solution to 

a crossword puzzle clue is the word we write down in the puzzle; 

the solution to an arithmetical problem is the number we come 

to when we have worked it out. 

2 Sometimes we mean the way of finding the answer. In this sense, 

we have solved the problem when we have discovered how to 

reach the answer. Getting the answer - putting the solution into 

practice - is a quite different step. 

To avoid confusion in this chapter we shall only use solving and 

solution in the second of these two ways: to mean the working- 

out of how to reach the answer. 

Bearing this in mind, what are the steps involved in problem 

solving, and how can the computer fit in? They are as follows: 

1 First there is a problem - sometimes you may feel you under¬ 

stand the problem completely - perhaps you are quite clear how 

to tune a piano, for instance. With other problems, you won't 

have a clue where to start. 

2 The next step is to analyse the problem - make sure you know 

what it consists of. We shall look at this in more detail later in 

the chapter. 
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Then we have to solve the problem - work out how to reach the 
answer. 

Next we carry out the solution - carry out the calculations, test a 
possible answer to see if it works. 

Finally, we come to the answer - and we don't have a problem 

any more. 

What can the 
computer do? 

We can rule the computer out of stage 1 - the problem - straight 
away. With any luck the computer is helping to solve our 

problem, not creating one! But can the computer analyse the 
•problem? Basically, the answer is no. This is a piece of hard 

work you have to do for yourself. 

The computer is also not able to solve problems in the sense 
in which we're now using the word 'solve'. You have to solve 
the problem yourself, work out how to get to the answer. Then 
you tell the computer this, in the form of a program; what the 
computer does is carry out your solution and provide the answer 
for you. Not very impressive, you may think. But it can be 
enormously helpful in some circumstances: 

1 If the problem is a routine one, which you solve in the same way 

repeatedly - you might do the same calculation frequently on 

different figures or use the same technique to find many different 

phone numbers. 

2 If the solution is simple, but carrying it out is slow or difficult - 

you know how to do a maths problem, but the particular num¬ 

bers in this one make the calculations cumbersome; you know 

how to set about finding a phone number, but the size of the 
directory makes looking it up a slow job. 

3 If carrying out the solution is, quite simply, impossible for 

humans - it may need to be done too quickly, or in nasty condi¬ 

tions, or the inevitable mistakes which humans sometimes make 
might lead to major disasters. Think, for instance, of the problem 

of reacting in time to changes in a chemical process reaction, or 

to the cooling system of a nuclear reactor. 

It is therefore people who solve problems. Computers are a tool 

for helping them carry out the solutions. Now we'll look/ 
in turn, at three aspects of this use of the computer to help people 

solve problems. 

First the analysis of the problem: deciding what it's all about/ 

and selecting or discovering a solution. Secondly, we'll review 
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the kinds of solution that computers can carry out. Then in 

Chapter 4, we'll look at programming, the way in which people 

tell computers how to set about carrying out that solution. 

Looking at the 
problem: analysis 
and solution 

What are the facts? 

Why can people alone solve problems, and not computers? 

Simply because people alone can think. Computers, whatever 

their other uses, can't think for themselves, and problem solving 

involves a great deal of thinking. 

All the same, many people don't think of themselves as good 

at solving problems. Ask them how they found a solution, and 

they might say: 

'It's common sense, isn't it?' 

'Oh, I've a sixth sense for these things.' 

You may not need special training to solve many of the problems 

you come across day by day: they solve themselves, almost 

without your realising. However, you do need to be trained to 

set about solving the difficult ones. These need a bit more 

thought, and our purpose is to show you some ways of channel¬ 

ling and structuring that thought. 

That is what analysis is all about: thinking about a problem, 

but in a structured way. What structure? Well, it all depends on 

'what problem'! But since we've already introduced the start of 

a structure, we'll use that. It consists of the three parts we saw 

that every problem has: the facts, the answer, and the gap. 

It's a help to make a note of all the facts we already have about 

our problem. Why? Because that's a good way of finding out if 

we have enough facts. Do we know enough about each fact? 

Are there vital facts we don't have at all? 

We'll take a couple of our problems. See what facts we have, 

and what facts we will need. 

The fixture list 
What do we already know ? We know we're talking about a foot¬ 

ball league, but how many teams are there? Clearly we must find 

that out. Let's say there are 10 of them: that will mean 18 games 

(one at home and one away with every other team) for each team. 

We know we're talking about the fixtures for one season. 

How many dates is that? Let's say our league plays on Sunday 
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afternoons. Ideally, the season will consist of 18 Sundays, but if 

we can't schedule matches to fit in like that, we could extend it 

by, say, two Sundays. So we have a maximum of 20 dates on 

which matches could be played. 

Is there going to be one right answer to the fixture list 

problem? Probably not. There are dozens of lists we could end 

up with. But some will be better than others. Let's think for a 

moment about which one we want. 

Well, it is absolutely essential that each team should play 

each other team at home and away. We would therefore reject 

any answer in which that didn't happen. However, if there are 

lots of lists in which this happens, what else would we be looking 

for? We've already mentioned two other features which, though 

not essential, are very desirable: that the teams should play at 

home and away on alternate weeks, and that each team should 

have a fixture every week. To decide just which answer we 

want, we'd have to decide how these compare in importance. 

Suppose that we're prepared to go up to our 20 date limit 

to the season, in order to ensure that the home and away matches 

are well distributed. However, if we can distribute them evenly 

over an 18 or 19 week season, that would be preferable. 

Are there any other factors to be considered ? We might, for 

instance, want to think about how far the teams have to travel 

to away matches, or in what order they play teams from the top 

and bottom halves of last year's league table. Do we want these 

facts at this stage, then? On the whole, probably not. Let us first 

see if we can find a list which meets the guidelines we've already 

chosen. Then if there are several which do, we'll think about 

whether it's worthwhile getting more sophisticated in our 

solution, to choose between them. 

Route finding 
The example we are using here - how to get from London to 

Godminster - is an imaginary one, with imaginary places on the 

way, like Camford and Little Wittering. In real life we might 

be trying to develop an enormous data bank of information 

which would enable, say, a travel agent to help tourists to decide 

how to get from place to place right across the country. Some of 

them might want the quickest route, some the cheapest, others 

the prettiest, or the prettiest provided it is not too expensive, or 

the fastest provided that they don't have to fly, and so on. Our 

example is a simple one designed to show, in principle at least, 

how we might go about solving the problem of creating such a 

route-finding aid. 
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Returning to the business of setting out what we know about 

the problem, what alternative routes are there? What alternative 

forms of transport? The form of transport we choose will, 

naturally, affect the routes available to us. Assuming, though, 

that there are just three possibilities: plane, train and bus (or 

combinations of them), we might end up with the following: 

GODMINSTER 

LITTLE 
WITTERING 

TRAIN 

CAMFORD PLANE 

TRAIN 

LONDON 

ROUTE 

NUMBER 

FARE 

(£) 

JOURNEY 

TIME (HRS) 

1. TRAIN (VIA CAMFORD) 8.00 1.50 

2. BUS/TRAIN (VIA CAMFORD) 7.50 2.20 

3. TRAIN/BUS (VIA CAMFORD) 6.50 2.30 

4. BUS (VIA CAMFORD) 5.00 3.00 

5. PLANE 10.40 1.00 

6. BUS (VIA LITTLE WITTERING) 6.00 2.50 

7. BUS (VIA LITTLE WITTERING) 5.50 2.30 
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These are some possible routes: 

1 Train to Camford then train to Godminster. 

Bus to Camford then train to Godminster. 

3 Train to Camford then bus to Godminster. 

4 Bus to Camford then bus to Godminster. 

5 Plane from London to Godminster. 

6 Bus from London to Little Wittering by the short but boring 

motorway route then on by bus to Godminster. 

7 Bus via Little Wittering by the slow but pretty route. 

The 'best' route depends on what you are looking for. Does it 

matter if it is short or long ? Are we most interested in whether 

it is cheap or quick ? Is there anything we want to do on the way 

- like visit the Norman church at Little Wittering? 

Certainly we want to know the cost of the route and the time 

it will take. The length of the route may not be so important. 

There's no right answer to this problem, either. But there is a 

best answer, depending on what we are looking for. Let's look 

for two different 'best routes': 

1 The quickest route costing £7 or less. 

2 The cheapest route which takes less than two and a half hours. 

We might add that although these are the most important things, 

if two routes come out equally on test, then we'd prefer travelling 

by train to travelling by bus and would like to go by plane most 

of all. 

Filling the gap So far so good; we have the facts, and we know what sort of 

answer we're looking for. Now for the next bit: filling the gap 

between the problem and the answer. 

Remember, we're not going to bring in the computer yet. 

We're still at the stage of analysing the problem, finding out 

what it consists of. Then we're going to go on to solve the 

problem; it's only when it comes to carrying out the solution 

that we'll think about whether we want to use a computer or not. 

So we'll go back to our two problems, and see what's in that gap. 

The fixture list 
We've got, on the one hand, the teams and the dates. And, on 

the other hand, the features we want our fixture list to have. 
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Complications 

Solving the 
problem 

The logical 

and the lateral 

What's in between? The difficulty of finding a list which meets 

our guidelines as closely as possible. That's the gap; the solution 

is the way we're going to discover of finding that list. 

Route finding 

For this exercise, we have our routes on the one hand and our 

guidelines for which route we'd choose on the other. And in the 

middle? The job of testing the alternatives, to see which one fits 

the bill. 

Using the methods above we've analysed our problems. Of 

course, these are pretty simple problems, and they haven't been 

too difficult to analyse. In real life, we come across some much 

more complex problems, not just the kind of problems we put 

at the head of our list at the start of the chapter (controlling the 

jet engine, and so on); they are pretty simple as problems, though 

solving them is not so easy. But what about 

predicting the likely sales of a new product 

designing a hospital 

solving the crime problem? 

Difficult as these may be, it does help to go about them in the 

same way. The most daunting problem looks more manageable 

if you take a systematic look at the facts, the sort of features you 

want to find in your answer and at the difficulties which lie in 

the way between you and the answer. If you feel you can't grasp 

the problem at all, it can be a help to divide it up into different 

parts, and to analyse these one by one. We'll talk later in the 

chapter about some of the things you will need to look out for 

in doing this sort of complicated analysis. 

All the analysis in the world, however, won't actually solve the 

problem. We must now go on to the next stage: finding a solution. 

We're not talking about an answer, remember: just a solution, a 

way of reaching the answer. 

Perhaps we should draw a distinction, first of all, between two 

quite different ways of going about problem solving. First, 

there's the logical approach. You know what you're looking for. 

You know what alternatives are available and you can solve the 

problem by looking at each of the alternatives in turn, seeing 

how they measure up to your objectives. You have probably 
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already decided that this is how you'd tackle the route-finding 

problem. You'd calculate how much time each route took, how 

much each cost, and then you'd check all the routes against each 

other to see which one best fits the bill. There are only seven 

possible routes we've given ourselves, so that wouldn't take too 

long: there's no point in trying anything fancier. 

What about that fixture list problem, though? How many 

possible ways are there of combining those teams into a fixture 

list and how are we going to find one which meets the guidelines 

we've drawn up? This time, there are thousands of alternatives. 

You would immediately rule out some which obviously don't 

obey our rules - those which schedule exactly the same matches 

week after week, for instance. But it would take a very long time 

to look at each possible list in turn, discard all those which won't 

do and list all those which will. 

You may ask, isn't that what the computer is supposed to be 

good at - sorting through a lot of information, and fishing out 

the bits we want? Well yes, it is. But take a look at just how 

much information it would have to sort through in this case. 

How many ways could the list actually be made up - so that 

each week, let's say, each team had one match angl every team 

was listed? For each week, that would mean 30,240 possibilities. 

Then we'd have to combine the weeks with each other to 

make a season of 18, 19 or 20 weeks. Looking at the 18 week 

seasons alone (and our solution might not even come among 

these), there are millions of alternatives. If we now take account 

of the different ways of combining weeks to make up a season, 

the possibilities increase still further. Even for the computer to 

draw up all those lists and check to see if each in turn was what 

we were looking for, it would take a very long time indeed, even 

if it were working at the enormous speeds we talked about in the 

last chapter. 

So you think there's an easier way? Well, just you find it; 

have a few tries, and you'll soon discover it's not that easy. In 

fact, it is not going to be a totally logical process at all. We'll have 

to make a guess at a way which might do, then test it out to see 

if it works - and if it doesn't, think again. 

In other words, we're back to that 'sixth sense' business 

which we sometimes call lateral thinking - not plodding for¬ 

wards logical step by logical step, but making jumps all over the 

place so as to cut corners. It isn't entirely magic, though. We have 

clues to help us. In this case, we all probably know some simple 

techniques for sorting information which we might use to get 

started. We might, for instance, decide to look at the first half 
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of the season first, and try and fit one match between every 

combination of teams into the first ten weeks. Then we could 

use a 'mirror image' for the second half of the season. What other 

techniques would you try ? 

In fact, logical and lateral thinking aren't completely 

different; they merge into each other, and this kind of example 

- where we could deal with a few alternatives logically but need 

to find a different way of dealing with a lot - shows us just how 

they can fit together. It shows us, too, that the computer doesn't 

do away with the need for lateral thinking. Its speed and accuracy 

certainly make logical thinking a very powerful tool but there 

are still plenty of situations in which logic alone isn't enough. 

There are other ways of thinking laterally, too, which come 

in handy when we have other kinds of problem to solve. We'll 

take a look at some later in the chapter. 

We should also mention another way in which the computer 

cuts down the need for thinking of both kinds. We might solve 

our fixture problem by 'borrowing' a solution - in the form, 

perhaps, of a computer program someone else had written to 

solve a similar problem. It needn't be a football fixture problem 

they had tackled; it might be, say, a tennis club round robin 

contest, or even a timetable or a way of sorting scientific results. 

Football isn't the important part, when it comes to solving the 

problem; that's the context of the problem, rather than the 

content. We need a solution with a similar content, even if it 

occurs in a different context. 

In order to find one, we need to get used to the idea of 

separating the content from the context - the sort of problem it 

is, from the details which make it unique. In this case, the content 

of our problem involves a way of drawing up and testing 

alternatives, when there are too many alternatives to work 

through them all one by one. We'll come across this same content 

in problems and solutions from very different contexts. 

Mapping out the logic Before we talk about clues and tricks to help us think laterally, 

let's look at the business of solving problems logically. And this 

is the point at which we're going to introduce flow charts. 

Some people have the idea that flow charts are something 

special to do with computing. Not so they don't involve com¬ 

puter programming at all. They are simply a way of drawing up 

a map of our solution: planning out logically, step by step, how 

we're going to carry it out. 
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There are a number of conventions people use in drawing 

flow charts, but for now we're going to stick to a very simple 

version. It has: 

a beginning - which we make this shape: 

instructions on what to do next, this shape: 

junctions - leading to paths which we travel down in different 

directions, depending on the signposts on them. We might also 

think of these as decision points. 

They are this shape: 

An end, the same shape as the beginning. 

Piano tuning. 
Once one note is tuned accurately 

to the pitch of a tuning fork, other 

notes are then compared by ear. 

The tuning pegs, which control the 

tension in the strings, are held in 

position by friction and a special 

key is used to ease them round. 

Joining these shapes up are paths, with arrows to show which 

direction we should travel along them, and sometimes signposts 

- often based on 'yes' and 'no' answers to questions. 

We'll make all this clearer by taking a problem, and drawing 

a flow chart of its solution. We won't start with one of the two 

we've been analysing. Instead, let's take a very simple one: 

tuning a piano. How do you go about tuning a piano? Like this: 
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Start 

It's quite simple but have a good look to make sure you under¬ 

stand how it works before reading on. You'll see that though 

you start at the start and end at the end, you don't necessarily 

go down all the paths in between: only the ones you need. You 

may also go down some several times. The 'loops' we've put in 

send you backwards, so that you can repeat the operation of 

testing and adjusting as many times as are necessary. Loops are 

a very important idea in drawing flow charts and in computing 

programming. It is very important to make sure there is a way 

of escaping from these loops, so that you don't travel endlessly 

round in circles. How do we escape here? 

Now you've got the idea, how about having a go yourself at 

the London to Godminster problem? Start by plotting a way of 

finding that first 'best route' - the quickest one costing under 

£7. And when you've drawn the flow chart, carry out the 

operations in your head to see if it works. 

We've drawn our own version on the next page. Your chart 

need not be exactly like ours to be right. There are several right 

ways of solving this problem - the main thing is to make sure 

that yours works. Did you miss anything out? Could you escape 
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from any loops you used ? Once you're sure it is right, then you 

can think about whether you could have got there more simply 

or easily. A similar technique could be used for the alternative 

problem - finding the cheapest route which takes under two and 

a half hours. 

Exhausting the 
possibilities 

You may feel that the flow chart was pretty complicated, for 

such a simple problem, but we haven't put anything into the 

flow chart that wasn't in the original problem as we analysed it. 

It just shows that when you buckle down to it, there's a lot more 

to even the simplest problem than you first imagine. Even if you 

were simply looking at the map and making calculations in your 

head or on a scrap of paper you will, without realising it, have 

gone through those steps yourself. In Chapter 1, we looked at 

the way a computer is thoroughly stupid. It can't do anything 

for itself; you, the programmer, have to tell it to do every single 

thing. In order to tell it accurately, you really do have to be as 

exhaustive as this. You can imagine what the flow chart would 

look like for a really complicated problem! 

This is not the only direction in which you need to be 

exhaustive in problem solving, however. You will only get the 

right answer if you ask the right questions; before you even 

draw up the flow chart, you should make sure you have taken 

into account all the possible solutions. We cut the alternative 

routes from London to Godminster down to seven, for the sake 

of the example, but did you take into account the possibility that 

none of them would fit the bill, for instance? In real life, you 

don't want to cut down until you have opened up. What, for 

instance, if the most attractive way to get to Godminster had 

been by canal boat? That's a possibility we didn't even consider! 

Now you've seen just how much work goes into solving even 

a simple problem, you should be in a much better position to 

appreciate how much work will be wasted unless you carefully 

analyse every aspect of the problem before you even think 

about the solution. 

Data and 
instructions 

You will have noticed that when we drew the flow chart for the 

route finder, we didn't put any details about the routes them¬ 

selves into it. We didn't even say there would be seven of them, 

and we could have used the same flow chart if there were 100 

or 1,000. 
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To understand why we didn't, we need to introduce a very 

important distinction: between instructions and data. What are 

they? Well, broadly speaking: 

1 Instructions are what we do, or tell the computer to do. 

2 Data is what we carry out the instructions upon. 

So, in this case, the instruction is the flow chart; and the items 

of data are the facts we found out about the routes. Much the 

same is true of the piano tuning example: here, the instructions 

are in the flow chart again, but the data are the various notes, 

right or wrong. 

However, it's not quite so simple because what are instruc¬ 

tions in one instance can be data in another. Let's take a fairly 

straightforward example. We've put our price limitation - that 

'£7 or less' - into the flow chart. Alternatively, we might have 

put it into the 'data' section. Our instructions, instead of saying, 

'Is the cost £7 or less?,' might have said, 'Find the maximum the 

client is prepared to pay. Is the cost less than that?' You will see 

that this could be a very useful refinement if, say, the problem 

was being solved by a travel agent with lots of customers who 

had different budgets. So we could modify the flow chart to 

allow for this new instruction. Notice the new shape which 

means 'take in data at this point'. The modification has, of course, 

lengthened the flow chart. 

Generally, you will find this true of instructions, whether they 

are in the form of flow charts, computer programs or whatever. 

'Tailor' them to fit the problem precisely and they will be short 

and simple. Make them 'off the peg' and you will have to make 

them a bit bigger, but that leeway will pay off if you can use the 

same solution to deal with lots of different problems. It's rather 

like the content and context distinction we made earlier: we are 

taking more and more of the 'context' out of the solution and 

finding that the universal 'content' which is left can be applied 

in more and more instances. 

The child's 
multiplication 
table 

We'll take one more problem, and look at the instructions and 

data question for that, too: the problem of testing a child's 

knowledge of the multiplication tables. We need to stop some¬ 

where so let us cut it down to the range from 1 x 1 to 12 x 12. 

We need to generate questions from that range and we need to 

test answers to see if they are right, giving the child another go 

if he or she gets it wrong. 
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We want a method of producing questions and testing answers, 

then to ask a particular question - say, what is 6 x 8?, take in 

the child's answer and get back a 'right' or 'wrong, try again' 

response. After three wrong guesses we want to be able to give 

the right answer and then be in a position to ask the next 

question. 

The solution Can we solve this logically? Yes. There are only a modest number 

of possible questions in the multiplication table (144, to be 

precise), and it should be possible to find a way of carrying out 

a straightforward logical solution. So let's set out the flow chart. 

What are the instructions here? Simple - they're on the flow 

chart. But what are the items of data? The answers given by the 

child are certainly data. But is there any other data? What about 

two other pieces of information - the numbers we produce at the 

start, and the right answers? 

It depends very much, in fact, on how we carry out the 

solution. What do we mean by that? Well, let's say we do all 

this by hand. We generate random numbers by throwing a dice, 

and we check the answers against a written multiplication table. 

Would you agree that the numbers on the dice, and the written 

table, are not instructions but data? 

If we program the solution for a computer, though, we'd get 

those numbers, and check the answers, in quite a different way. 

Some computers have a program to generate random numbers, 

and we might simply instruct the computer to dig out two 

'random' numbers. All digital computers can do multiplication so 

that when it comes to finding the right answer, we just instruct 

the computer to multiply the two numbers together. Now are 

those numbers instructions or data? 

Not so easy, as you can see. Broadly speaking, when we are 

talking about a computer program, we mean by instructions 

what is actually written in the program; and by data what are 

items of information the computer has to obtain from outside 

the program, when carrying it out, or running it. The computer 

doesn't obtain anything when finding the right answer, so that's 

part of the instructions. Does it obtain anything when producing 

the numbers ? If it uses a random number generator which is part 

of its programming instructions (we'd just tell the computer, 

'generate any number between 1 and 12), that's also part of the 

instructions. It would be data, however, if (for instance) we fed 

in a list of numbers and asked the computer to run down the list, 

asking one question after another. We look at this question 

again (and point out an important exception) in Chapter 4. 
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Carrying out Though we've been going through our problem solving step by 

the solution step - from the analysis to the solution and now to carrying out 

the solution - you'll have realised that it isn't as simple as all that. 

We have to keep looking backwards and forwards. For instance: 

1 In finding the facts, we have to anticipate what kind of answer 

we shall want. 

2 In deciding what kind of answer we want, we have to bear in 

mind the difficulty of solving the problem. 

3 In solving the problem, we have to take into account how we're 

going to carry out the solution. 

That last flow chart we drew is already half way to carrying out 

the solution - because in putting in the sources of data, we had 

to decide whether we were going to carry out the solution by 

hand or on the computer. In fact, even before listing the instruc¬ 

tions on the flow chart, we need to know how the solution will 

be carried out. 

Why? Well, take for instance that 'produce a random 

number' instruction. We need to know how it will be done 

before we know if it is an adequate instruction. What if we're 

going to carry out the solution on a computer that doesn't already 

have a random number generator? Then we'd have to be even 

more exhaustive in our instructions, either by telling the com¬ 

puter exactly how to generate random numbers, or by giving it 

a list of numbers to work down, as we suggested above. 

The patterns of travel down a flow chart are closely related 

to the pattern of movement around a computer program. The 

computer, like us, will be able to 'loop' back on itself, or 'branch' 

down one path or another, depending on a particular result. If it 

couldn't we'd have to take that into consideration when we 

drew the flow chart and think of another way of mapping the 

instructions. 

It's true to say, in fact, that deciding what tools we'll use to 

carry out the solution is still part of the solution, rather than part 

of the carrying-out. 

Choosing the 
computer 

Inevitably, to make our examples simple enough to be readily 

understandable in this chapter, we've made some of them so 

simple that they could easily be done by hand. Why bother to 

use a computer for testing the multiplication table, you may be 

asking yourself? I could easily act as the tester myself! However, 
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Route finding: 

sorting and 

selecting 

J 

The fixture list: 

working out 

the difficult 

the computer could score over doing it by hand in all the cases 

we've mentioned. Look at them in turn, and see what are the 

advantages of doing it on the computer. 

It is no problem selecting the best route manually when we've 

only given ourselves seven routes, and only a few simple con¬ 

ditions to fulfil. What if we'd investigated fully (as we'd certainly 

do in real life) and found a selection of routes - road, rail and air 

- interlocking and combining in various ways, to produce 

dozens of alternatives? What if we knew a dozen facts about 

each which might influence our choice? It would soon become 

extremely difficult to work through and find out which route 

suited us best. What if we requested a route with features that 

no route had? Maybe we'd ask for a route that took under two 

hours and cost less than £6. We'd check every one on the list, 

find that none fitted the bill, then decide that we'd like to know 

how quickly we could get there for £6? or how much it would 

cost if we only had two hours to spare ? Change your mind dozens 

of times, and the computer will still be there, replying politely 

and never missing a vital stage through sheer exasperation. 

Working at high speed, on lots of alternatives, the computer 

proves to be an expert at sorting information to find the 

particular example or examples which meet various criteria - not 

only routes, but names and addresses (select out, say, all the 

members of a particular committee from the address list of a club 

or association), hotels, restaurants, holidays (We want to go to 

Ibiza - but then we wouldn't mind Crete. What's really important 

is that we can't afford more than £200, and we must have a 

double room; we want to be able to skindive; do you think we 

could do that more cheaply in Corsica?; we'd skip the double 

room if it saved us £10, of course), etc. If the information is there, 

then the computer can sift through it quickly, without losing its 

temper - always assuming it's been programmed correctly. 

If you tried to draw a flow chart for this, and you are not an 

expert mathematician or logician, it probably drove you round 

the bend. Try to draw up the fixture list itself, and you'll settle 

after the first five hours for a half decent version. Never mind 

the alternate homes and aways - at least all the matches fitted 

in somewhere. 

Can you do it on a computer? Yes, of course. It's not a 

program you will be writing for yourself next week, but people 

have written programs to deal with this sort of problem, and all 

you have to do is buy a suitable one or have one modified. 
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The multiplication table: 

patient teaching 

Piano tuning: 

sensing the 

unlikely 

An artist's impression of a possible 

electronic hand-held piano tuner. 

It contains a microphone, to listen to 

the note; a keyboard, to choose the 

note being tested and the octave; a 

special motor, geared down 

enormously to provide the right 

amount of 'twist' to turn the pegs, 

and a trigger to set it going. 

Sure, you could sit for hours and fire questions at a child. But 

you have to be there to fire them. You have to keep concentrating 

and woe betide you if you give the wrong answer. 

The computer never gets tired, and is always available, 

always accurate. It's polite even when the answers get really 

silly. And it's fun to use ... for a while. Of course, a simple 

program like the one we've just described does no more than 

test. It cannot teach and it cannot fathom out why you get the 

wrong answer or help you get the right one. But a much more 

sophisticated program could do a good deal of this. 

To think of the computer as a tool for piano tuning needs a fair 

bit of imagination, of lateral thinking. We get so readily trapped 

in the predictable pattern of solving familiar problems in a 

particular way that it takes a real effort to make ourselves see 

them differently. However, when you think about it, the com¬ 

puter could make an ideal piano tuner. 

If we strip away the context of piano tuning and look at the 

content, the problem ceases to be about music at all. It has to do 

with testing and adjusting and, from Chapter 1, you will re¬ 

member that sensors can act as input and actuators as output to 

enable the computer to test something and alter it if necessary. 
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Right: Bill Davies designing a 

working electronic mock-up. 

Note the small 'stepper' motor, 

fitted with a pointer. 
Left: Testing the equipment. 
Although the motor does not have 

enough power to turn the pegs, it 

does respond correctly to the 

computer's signals and can tell the 

operator - by its movement (or lack 
of movement) - when the note 

is in tune. 

The electronic piano tuner 
A teacher from Bury St Edmunds wrote to the BBC after watching 

a programme about microelectronics to say that he and his wife 

find it difficult to find piano tuners in their area and he suggested 

the idea of an electronic piano tuner which would be rather 

like an electric hand drill in size. This would fit over the square 

ended tuning pegs on the piano. A microphone would pick up 

the sound as the string is struck and the computer would com¬ 

pare the frequency of the note it hears with a frequency stored 

in its memory. If the note were too low it would instruct the 

motor to tighten the string; if too high it would relax it by 

turning the tuning peg the other way. 

In a recent programme in the television series Managing the 
Micro, Bill Davies, of Brighton Technical College, produced a 

mock-up of such a system and showed that it could work - at 

least in principle. 

Clearly, a practical piano tuner would need to be mechanic¬ 

ally very strong and extremely sensitive. It would also need to 

hold many notes in its memory and would need a keyboard of 

its own into which the user would enter the name of the note he 

wanted to tune. 
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The X factor: 
hitting the 
right solution 

The 

professional 

touch 

Stripping 

out the 

context 

Professional piano tuners say that tuning pianos is a very subtle 

business and doubt if a device of this kind would be good 

enough. However, it is amusing to speculate that one day it 

might become sophisticated enough to beat the human being! 

The unlikeliness of the piano tuning example underlines the 

importance of 'lateral thinking' - looking at the unobvious. 

Clearly it is important not only in selecting the method by which 

we will solve a problem, but also in choosing our tools. 

Let's take a brief look at some of the ways in which our 

thinking is restricted, and at some tricks for lifting those re¬ 

strictions and showing us new possibilities. 

All of us have various thinking and operating techniques which 

we use in our jobs - a mixture of viewpoint and practice. Imagine 

asking a mathematician, an engineer and a housewife to design 

the perfect house. How would their solutions differ? 

You'll probably agree that each would over-emphasise some 

features of the design, and under-emphasise others. The house¬ 

wife would know a great deal about how to make a house 

pleasant to live in, but she might not take into consideration the 

location of the plumbing pipes. The mathematician might care 

about the proportions of the rooms, but fail to notice that the 

kitchen and dining room were at opposite ends of the building. 

The engineer might design a house that functioned perfectly 

from a technical point of view, with all its systems well thought 

out, but that just didn't look right. 

Of course we need to make full use of the experience we 

already have in problem solving. At the same time, we need to 

be wary of giving too much emphasis to the familiar aspects and 

ignoring other important considerations. If, say, you asked a 

musician to find a new way of tuning a piano, do you think he 

would think of using a computer? 

We've already mentioned the difference between the content 

and context, and how the context of a problem can blind us to 

its content. When solving that fixture list problem, for instance, 

it is no help to think about other aspects of running a football 

team. Instead, we need to compare it with other problems that 

involve arranging data in a particular way. 

One useful way to set about this is to rephrase the problem, 

or even a single word in it. Suppose, say, your problem is 
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Unlikely 

associations 

deciding where to put a bath. Why not get rid of the word 'bath' 

altogether, and substitute the word 'container'? It doesn't mean 

quite the same, but a bath is, among other things, a container. 

Using the alternative word could set you thinking along less 

obvious paths. Do you want to put anything besides water in 

the bath (coal? the laundry? the kids' rubber ducks? plants?)? 

Where does the water come from to fill the bath? Or you might 

try the word 'wash' - and consider whether you really need a 

bath? How about a shower? A sit-up bath? How does the bath 

fit in with other washing arrangements? And so on. 

Another trick that takes us a little further along the same route 

is to consider a comparatively (at first thought) unconnected 

word, and see if you can work from there to your problem. 

Examples? Let's take the problem of supermarket stock levels, 

and the word 'day'. Not an obvious connection but it might 

make us think along the lines of, say, how often do we want to 

add up sales and recalculate stock requirements? Is a day a good 

interval? Should we do it more than daily? Could we do it 

continuously by electronic means? And all of a sudden, the chore 

of doing a weekly stocktake appears in a quite different light. 

It is very easy to get stuck in a rut when you're approaching 

a problem. You see it one way, and even if the way you see 

doesn't seem to be leading anywhere, it's difficult to change your 

perspective. Associative techniques are intended to break the 

vicious circle. It's like, say, going to work. You might take the 

same route day after day, without ever giving it a thought. Then 

one day you have to visit the dentist first and you stop to think 

how to get from the dentist's surgery to your work. Suddenly, 

it strikes you that for years you have been taking a long way 

round. The alternative was right in front of your eyes, but you 

just couldn't make yourself see it. 

What about One good word to use in this associative way is staring us right 

that computer? in the face - it's that word computer. If you don't have a com¬ 

puter at the moment, you may still be finding it hard to think 

what exactly you would use it for. You're not a football league 

secretary, your kids are past the multiplication table stage, and 

you don't play the piano. You can't say that there have been that 

many occasions when you've said to yourself, 'I could just do 

with a computer to help me solve that problem.' 

You will probably recall, if you stop to think, several 

occasions on which you have bought a new tool - a deep freeze, 

perhaps? an electric drill? - which you didn't expect to use all 
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that frequently. Yet once you had it, you found yourself using 

it again and again. It's as if the more you used it, the more you 

found you needed it, until soon you couldn't imagine how you 

ever did without it. 

It's hardly surprising - you were using the same type of 

association. The new gadget was probably at the top of your 

mind, and when you came across a problem in your daily life 

(what shall I cook for supper ? where shall I hang that picture ?) 

your mind worked from the gadget to the problem, perhaps 

without you ever noticing. 

In the future, designers, engineers, managers and house¬ 

holders will look to the computer as a versatile tool to use in the 

solution of a whole range of problems. We are only at the early 

stages of the computer revolution and, although things are 

changing rapidly, the use of small computers is still limited by 

the lack of good programs (software) as well as a lack of the right 

kind of sensors and activators (hardware) needed to carry out 

the tasks they could be asked to do. 

Lastly, to reinforce some of the points we've made about 

problem solving in this chapter, here is our final challenge - 

controlling a greenhouse. 

The greenhouse What is the greenhouse problem? Well, we certainly know some 

problem basic facts: we know what plants are being grown and what 

conditions they like, how much heat or cold they can stand, 

how much food they need and so on. The answer: a way of 

controlling these various factors, when we're not around to do 

it ourselves. And the gap: finding that way. 

Here we have to do our hard thinking in order to fill in that 

gap. How might we start? Well, remembering what we've said 

about content and context, you will doubtless realise that the 

problem of running the greenhouse isn't just about plants. What 

is it about, then? The things that make plants grow well - the 

temperature, humidity, light and so on, the relationship between 

all of these factors and the control of them. 

That word 'control' is the one which might lead us to think 

that the computer could help us as we have seen that controlling 

things is one job the computer can do very well. Could it do the 

job in this case? 

Basically, the answer is yes. The computer can't easily 

decide what temperature would be best, or how much food the 

plants need - though it could keep a handy note of these details 

for us, once we'd worked them out. If we told the computer what 

temperature and plant food we wanted, though, it could certainly 
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How the parts of a computer-controlled greenhouse at the National Institute oj 
Agricultural Engineering, Silsoe, Bedfordshire, link together. 

Compare them with the diagram on page 36. Plants here are grown in 

hydroponic (soil-free) conditions using a liquid feed. The computer controls 
its composition. 
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go about keeping them within the range we selected. 

What kind of input and output would be involved to enable 

it to do this? Sensors and actuators would be used like the ones 

which control that jet engine (page 10). The sensors would 

measure the temperature and examine soil conditions and then 

they would input the measurements to the processor (we look 

in more detail at how this is done on page 91). The processor 

would compare the measurements with the temperature, soil 

acidity and other limits it had been given, and if they didn't fit/ 

tell the actuators to set in action the apparatus that might put the 

situation right - heaters, ventilators, pump, or whatever. 

Just to give one example where the computer would be 

better at controlling, say, the temperature in the greenhouse than 

more traditional thermostats, consider the problem of switching 

the heat on around daybreak. Photosynthesis in the plants can 

begin as soon as the sun rises and, to get the maximum photo¬ 

synthesis, the temperature needs to be raised to anticipate sun¬ 

rise. During darkness the temperature needs only to be high 

enough to prevent freezing. The ideal controller, therefore, will 

know when daybreak is going to be, for every day of the year. 

^ and will switch the heat on about half an hour beforehand. This 

is a very trivial problem for a computer programmer to solve and 

^ it is only one of a number of things which a greenhouse control 

p program could be asked to do to help reduce energy wastage and 

produce maximum yield in crops. Of course, in hot weather, 

keeping temperatures down is equally important, so here a 

ventilator control motor could be used, and linked into the rest 

of the system. 

At this stage we would doubtless have to go back and get some 

more information - things like what sensors are available? what 

would the system cost? and at least, could we actually buy or 

write a program to make the computer do all this? We haven t 

got rid of the problem until we have our solution up and running ■ 
In Chapter 4, we will take a look at programming one or two 

of the problems we've looked at in this chapter, and let you see 

for yourself that programming is really not such a mystery- 

Firstly though, we need to take a closer look at just how that 

computer works. 
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The hardware 
and the 
software 
So far we have seen roughly what the computer is like, what sort 

of things it does and how it fits into the business of problem 

solving. Now it is time to take a look at how the computer is 

actually put to work. We need to take the human being with his 

problem, the computer with its processor, memory and so on 

and look at the way in which we close the gap between the two. 

We've called the computer a tool for the problem solver, but 

we need to go a little further and look at how this very special 

tool differs from other tools - hammers, drills, sewing machines 

or the like. 

The adaptable 
machine 

With traditional technology, a machine was designed specifically 

with a task in mind. Take a simple machine consisting of a couple 

of cog wheels. The design of the cogs determines precisely what 

the machine will do - in this case change the direction of rotation 

and speed of a shaft. What goes on is completely predictable and 

is determined by the ironmongery - or the hardware, if you like. 

If we want to alter the machine in any way - say, to change the 

ratio determining the change in speed between the cogs - we 

have to change the hardware. This means physically redesigning 

the system. 
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'Programmable' machines. 

However versatile the computer, it 

would be quite wrong to think that 

it was the first ever programmable 

machine. Jacquard's loom, 1862, 

(top left, p 79) could weave 

different patterns in cloth 

according to programs stored on 

sets of punched cards (shown at 

the top of the machine). Inspired 

by the loom, piano makers 

developed similar devices (like 

the one shown extreme right, 

from the Musical Museum, 

Brentford). The paper roll, (inset), 

has the music punched into it. 

Air, sucked selectively through 

the holes as they pass over a 

perforated metal plate, operates the 

playing mechanism. Composers like 

Rachmaninov 'recorded' on pianos 

like this one. 

Below, a computer-controlled robot 

builds up the opening title sequence 

for a recent television series. 

When we use computer technology, an entirely new concept 

is required. What happens in a computerised system is not 

immediately obvious because what happens is determined not 

so much by the hardware but by the program of instructions fed 

in to the computer 'black box' from the outside. To alter what 

the machine does we simply alter the program - or the software 

as it is called. It is not necessary to alter the hardware physically 

at all. Changing the software instructions enables the computer 

to do different things. 

So the flexibility we gain through our ability to control the 

hardware by using a series of instructions is the key to computer 

technology. This has meant that a new breed of person has 

evolved to cope with these new concepts. We hear of people 

called 'software engineers', 'programmers' and 'systems an¬ 

alysts'. Most of these people work not with screwdrivers, 

soldering irons and other hardware tools, but with paper and 

pencil and the keyboard, creating instructions for the computer. 
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We saw in Chapter 1 that the computer's versatility is based 

on only a few fundamental things - adding two numbers to¬ 

gether, subtracting them to see if one is bigger, smaller or the 

same as the other. On its own, of course, the computer can do 

nothing; we have to tell it to do tasks which involve computing 

and we have to use a language which it can understand. This 

means programming it, and usually involves using a keyboard. 

It is possible to program some computers in what is known as a 

'high-level' language - that is, in a language which in some way 

resembles the language we use ourselves. At other times, it is 

necessary to use a 'low-level' language - for example, when the 

instructions are entered in the simpler but much more incom¬ 

prehensible 'machine code' of Os and Is discussed on page 96. In 

this chapter we take a look at some of the things going on inside 

the black box when the computer operates. 

Playing the game. A 'dedicated' 

microcomputer and its dedicated 

clientele. The machine has been 

programmed to perform only the 

one (admittedly complex) task. 

At this point it is quite important to make a distinction between, 

on the one hand, 'all-purpose' computers which we, the users, 

can program ourselves and, on the other, machines which 

may well contain microcomputers which have been pro- 
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grammed by their manufacturer to do quite specific things. The 

latter are 'dedicated' microcomputers. The television-based 

games found in pubs are of this kind - and so are the newest 

washing machine controllers: with the games you might play 

Space Invaders or nothing; with the washing machines you may 

be offered a wide choice of programs - for whites, coloureds, 

delicate fabrics and so on. You can select the most suitable one, 

but if you don't like the choice you are offered, that's too bad. 

You can't tell the machine to wash clothes according to a program 

you devise - you have to stay within the manufacturer's selec¬ 

tion. If the whites' cycle is at 70°C and has three rinses then 

that's that. It's just too bad if you want to wash at 65°C and 

with four rinses. 

The kind of computer we are interested in here is the kind 

which can be programmed by the user with a series of instructions 

ted into its memory in a form which it can understand. 

Programs 
and software 

A program is a series of instructions. The vital word here, 

though, is not 'instructions', but 'series'. The point about the 

programming concept is that it is not necessary to give the 

computer one instruction, wait until it has carried it out, and 

then give it another instruction - instead, we give it the whole 

series of instructions at once. That is what the automatic washing 

machine's program does, too. It tells it how and when to stop 

one operation and go on to the next, so it can move through the 

various washes and rinses in a cycle without stopping for more 

input from the user. 

The computer's program has one great feature - which some 

people have called the 'intelligence factor'. It is the opportunity 

to give the computer alternatives to carry out, depending on 

what it finds out as the result of carrying out previous instruc¬ 

tions. Take, for example, the procedure of deciding if an 

umbrella is needed before we go for a walk. We might program 

a robot to decide if it needs an umbrella, by giving it five 

instructions: 

1 Open door. 

2 Look at the sky. 

3 Is it cloudy or raining? 

4 If yes, pick up umbrella. 

5 Go out. 
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The software 

We saw alternatives like these in the flow charts we wrote in 

the last chapter, and we will see more of how the computer 

handles them in Chapter 4. This ability to make decisions, and 

as a result of them to take different paths through the program, 

is the one thing that makes the computer unique. 

We have already said that the program is part of the computer's 

software, as opposed to its hardware. The sort of program we 

talked about above - and the sort we wrote flow charts for in 

Chapter 2 - is called an 'applications program'. It is a program 

fed in from outside which tells the computer how to carry out 

an application. However, the computer has to know how to 

understand the program. 

If the program is written in the computer's binary code, and 

tells it exactly what to do at each stage, that's no problem for 

the computer. But for many applications it is preferable to write 

the program in a 'high-level' language, one which is easier for us 

to understand than the binary code instructions. To do this we 

use a program already in the computer to translate these instruc¬ 

tions into the binary codes which it understands. The 'inter¬ 

preter' - and this is analogous to a language interpreter - is also 

software. 
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Nearly all computers are made with some of these decoding 

instructions built into them. In fact, they aren't something you, 

the user, give the computer, nor do you need to understand them 

to use it - they are something the manufacturer has made a part 

of the machine. When the instructions come in this form, they 

are sometimes referred to as 'firmware'. The firmware then, 

usually contains everything the computer needs to know before 

it can run the 'applications programs' fed in from outside. 

We'll return to look in more detail at some types of software 

later in the chapter. First, we need to take a longer look at just 

how the computer's hardware gets to work. 

Inside the 

computer 

A simple way of explaining how the computer works is to use 

a simple analogy - that of a railway system dealing with coal 

trucks. As all analogies have their limitations, do treat this one 

in the spirit in which it is offered! 

Imagine that there is a main line along which trains arrive, 

and a main line down which they eventually depart (this is like 

INPUT and OUTPUT in the computer). Each train which arrives 

has on its front a number (an ADDRESS) which says which siding 

(MEMORY LOCATION) it is to go to, and has eight trucks, some 

containing coal, others empty (the DATA). As it arrives, each 

train passes a controller who operates the points to direct the 

train into the siding which has the same number as the number 

on the front of the engine. Let us imagine that two trains arrive 

- one is directed to siding number 20 and contains five tons of 

coal and the other is directed to siding number 21 and contains 

seven tons. The controller also receives instructions (a PRO¬ 

GRAM), say down the telephone line, and he writes these in¬ 

structions on a blackboard in his hut. Both the sidings and the 

blackboard contain all the information he needs. His job is to sit 

there all day, directing the trains in and out of the sidings and 

into the yard where new train loads of coal are made up according 

to instructions he has received. Imagine his instructions read: 

1 Take the contents of the train in siding number 20 

and move it into the yard. 

2 Take the contents of the train in siding number 21 

and add it to the contents of the first train. 

3 Store the result in siding number 22, until the main line is clear. 

4 Send it on its way. 
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One way of showing how the computer deals with numbers 

(see the explanation on p. 83). 

Bottom right is the schematic diagram showing the similar relationship 

between the various electronic components of the computer. Note that the 

'program' and the 'rules' are both examples of 'software', and so is the data 

(the coal in the trucks). The rest is hardware. 
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The controller operates the points and knows that only one train 

can move at once and that there is only room for one train in the 

yard at once. He has his own local rules about this. He directs 

the first train into the yard (the ACCUMULATOR) and it dumps 

its five tons of coal there, and moves back to its siding, empty. 

The second train is then directed to the yard and dumps its 

seven tons, again returning empty. The yard now temporarily 

has accumulated twelve tons. An empty train arrives, fills up 

with the twelve tons and goes off to wait in siding number 22 

until such time as the controller sends for it - to send it on to 

the main line (the OUTPUT). The controller is responsible 

for the directing of the trains, altering the points, receiving 

and looking at the instructions and for what goes on in the 

yard. His empire includes an area of the processor called 

the ARITHMETIC and LOGIC UNIT (ALU) and he is controlled 

by a clock and has his own local timetabling rules. Of course, as 

we have seen, the computer can add, subtract or compare two 

numbers, so in our imaginary railway the controller might get 

instructions which say 'If the contents of the train in siding 20 

are the same as that of the train in siding 21, then send the train 

from siding 21 to Bournemouth. If not, send it back to siding 21/ 

A curious exercise for a railway, but necessary to complete 

our analogy. 

Now, bearing our analogy of the railway in mind, a recap of 

how the computer works should be a little clearer. Most micro¬ 

computers handle numbers that are 8 bits long, and each 

memory location has a 16-bit number giving its address. Packets 

of data coming from the input in the form of 8-bit numbers are 

directed by the central processor to a memory location defined 

by an address. Each number is now taken out of the data memory 

in order and, according to the instruction given by the controller, 

is added, subtracted or compared to the result of previous 

manipulation. A special memory location has to be supplied to 

hold the previous result - this is usually within the control area, 

and is called the accumulator (where the results accumulate after 

each instruction has been completed). To make sure that the data 

reaches the processing area in the correct order, and at the 

correct time, some form of clock and local monitoring program 

is needed. 

Hence information from the input goes to the memory loca¬ 

tion given by the address associated with it. When the program 

- the list of instructions - is working, data is moved from the 

memory, according to those instructions, and manipulated in the 

arithmetic logic unit, or ALU. Once the instruction has been 



carried out, it is put back into a memory location, or moved to 

the output. 

In our example above, the instructions - in computerspeak - 

would be something like this: 

1 Load the ACCUMULATOR with the contents of 

memory location 20 

2 Add the contents of memory location 21 

3 Store the result in memory location 22 

In the accumulator the value of memory location 20 turns out 

to be 3, that in location 21 is 7 and the result is 12. So we have a 

very simple program for adding two numbers together. 

The different 
kinds 
of memory 

An 'EPROM' - A special kind of 

read-only-memory chip which can 

be programmed by the user. The 

program will stay there quite safely 

until the user wants to re-program 

it by first erasing it with a burst of 

ultra-violet light. Hence its name 

-- Erasable Programmable Read- 
Only-Memory. 

Read-only memory 
In most computers it is useful to have some of the instructions 

or, in the case of dedicated computers like that in the washing 

machine, whole programs permanently stored inside the com¬ 

puter. There are particular kinds of chips which enable us to do 

this so that the memory is not lost even when the machine is 

switched off. These are called 'ROM' chips. ROM stands for 

'read-only memory'. ROM is rather like a book of instructions - 

the controller can look things up in it but the contents do not 

change. As we mentioned above, the decoder which helps the 

computer to read a program is usually put into the computer by 

the manufacturer. We called this 'firmware'. ROM is firmware. 

The word 'non-volatile' is often used to describe this kind of 

memory - meaning that it is not destroyed when the power is 

switched off. 

Random-access memory 
The other kind of memory found inside computers is called 

RAM - 'random-access memory'. Another name for it is 'read/ 

write memory'. RAM chips are the kind which lose their contents 

when the power is lost - so this kind of memory is sometimes also 

described as 'volatile'. If read-only memory is like a book of 

instructions, random-access or read/write memory is rather like 

a blackboard on which you can scribble down notes, read them 

and rub them out when you've finished with them. In the com¬ 

puter, RAM is the working memory. If the dedicated computer's 

program is held permanently in ROM, then on the other hand 
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in the programmable computer the program is loaded (written) 

into RAM from outside. 

Back-up memory 
The last kind of memory which concerns us is 'back-up' memory. 

This is memory outside the main body of the computer in which 

programs can be kept for future use or in which data can be kept 

until the computer is ready to use it. It could be a cassette tape 

or a magnetic disc or drum and is needed for two reasons: 

1 The computer's working memory is only of a finite size and may 

not be able to hold all the data it needs to use. 

2 The back-up memory is 'non volatile' - it does not disappear 

when the power is switched off; only if it is intentionally erased 

by the user. 

Three sorts of 'back-up' memory: 

the 'floppy-disc' - removed from 

its protective container, the 

punched paper card (now almost 

extinct) and the tape cassette for 

home use. 

What about the expression 'random access'? The best way to 

understand this is to think of the difference between the domestic 

tape recorder and a gramophone record. On the tape recorder, 

if we want to find a piece of music in the middle of the tape we 

need to run through the tape to get to that part before we can 

play it. With a gramophone record we can lower the stylus down 

wherever we want and find that 'band' right away. The gramo¬ 

phone gives us 'random access'; the casette recorder does not. 

Is back-up memory 'random' access? Some is, some is not! 

If a domestic tape recorder is used to store data, then a given 

piece of data can only be found by running through the tape to 
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How the 'readI write' head can 

move across the floppy disc to give 

'random access' to its stored 

information. 

that point. The magnetic disc, though, does give us virtually 

random access. The recording or playback head can go to any 

part of the disc very quickly and write or read information stored 

at that point straight away. 
To summarise this, all the instructions that orchestrate the 

activities of the computer - like taking instructions from the 

keyboard, sending characters to the screen, accepting programs 

from casette or disc — must be kept in ROM. This type of ROM 

is usually called the monitor, as it monitors what's going on in 

the system. In most small computers the details on how to under¬ 

stand the program instructions are also kept in ROM. In some 

circumstances, applications programs will also be in ROM. All 

the instructions and data that the computer uses (or creates) in 

the course of running a program will be kept in RAM. 

Moving between 
the memory 
and the processor 

Getting information into and out of the memory is quite a com¬ 

plicated task. You will remember from page 37 that most 

common microcomputers can potentially store up to 63,336 

bytes (each containing 8 bits) of information and each byte lives 

in a separate memory location, with its own address. 

Using another analogy, consider the information to be stored 

as similar to the contents of a letter. The letter contains informa¬ 

tion and has to be sent from one address to another. The letter 

is put into an envelope and posted to the location given by the 

address on the envelope. When it reaches the desired location, 

the letter is taken from the envelope and kept at the new address 

until something else needs to be done with it. This is exactly how 

the computer handles information. Thus, whenever information 

has to be transferred from one memory location to another, this 

is done by knowing the source and destination addresses. 

The bits 
and pieces 

If you open up a computer and look inside you will see it consists 

of a number of silicon chips fixed into a complex web of wires 

on a printed circuit board. One of the bigger chips is the central 

processor and other chips form the memory - some of them are 

the read-only memory chips and others the random-access 

memory chips. Then there are other chips which connect with 

the input and output devices which form part of the computer's 

complete system. 
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Inside the BBC Microcomputer 

1 The Central Processor 

2 The clock 

3 The random access 
(working) memory 

4 The read only memory 

(containing BASIC) etc. 

Many other chips are needed to 

perform a range of functions - such 

as controlling the screen, and 

communicating with the various 

other 'peripherals'. 

The central processor The microprocessor is the most important component, with quite 

an assortment of functions. These include: 

1 Controlling all the different parts of the computer. 

2 Keeping the operations in time sequence. 

3 Performing arithmetic and logic operations - the job of the ALU, 

with the help of the accumulator. 

4 Transmitting data and instructions to and from the input and 

output and the random-access memory. 

The 'Bus' In any computer, the controller, the clock, the ALU and accumu¬ 

lator, the ROM, the RAM and sufficient other circuits to enable 

all these to communicate with each other and with the outside 

world, are connected by a thing called a 'bus'. A bus is simply 

the name given to a number of wires forming a communication 

path between different parts of the computer. The bus structure 

starts inside the microprocessor connecting its various parts and 

is continued on the outside where it is expanded to do a lot of 

other jobs. The bus in the computer is usually divided into four 

sections as follows: 

1 The power supply to all sections of the computer. 

2 The control bus which carries all the control signals. 

3 A two-way data bus which sends data and instructions to and 

from the processor and memory. 

4 An address bus which sends the address of the data which is on 

the data bus. 
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Unlike a real letter, the address of the information moving around 

the computer is sent separately from the data or instructions 

travelling from or to that address. Separate busses are used so 

as not to get mixed up. It might mix us up, but the computer 

really does find it easier this way. The busses are usually con¬ 

structed as a series of parallel conductors. They are clearly 

visible on the photograph above. 

Communicating 
with the 
computer 

So much for how the various bits of the computer communicate 

with each other. We'll now go on to look at how the computer 

communicates with the outside world, through its forms of 

input and output. 

We have seen that processing information is at the heart of 

any computer system. It must be stressed that information will 

only be processed in accordance with the program put into the 

computer. The computer is unable to think for itself. Information 

presented in an unexpected way will not be dealt with properly 

and if the machine is asked to process information in a way that 

it has not been programmed for, it will blindly try to continue 

until it comes to a grinding halt. Information comes in many 

forms, and both the input and the output units must be able to 

'translate' information into or from the form that the computer 

can handle. 

Dealing with 
the real world 

Unfortunately, not all of the information we would like to put 

into a computer system is easily available in the form that the 

computer can handle. Many computer-based systems are used 

for controlling things. Robots used on production lines to make 

cars are one of the more sophisticated uses. Modern cars are 

using microprocessor-based systems in one form or another. 

Cash registers, central-heating controllers, television games, 

watches, microwave ovens, cookers and many other consumer 

products now have microprocessors or small computers inside. 

The information used in these appliances comes in all forms 

from continuously varying quantities like temperature, to simple 

on-off information from a light switch. The latter is obviously 

easy to handle - it's already in a form which the computer can 

deal with using the Is and Os of its binary arithmetic 'On' = 1, 

'Off' = 0. There is no problem when the computer has to handle 

decimal numbers: we saw on page 34 how it translates them 
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into its binary numbering system. The problem comes when 

continuously varying information - called analogue data - 

has to be converted into separate numbers, or digital data. (Both 

decimal numbers and binary numbers are forms of digital data.) 

Most computers can only work with digital data - and it must 

find a way of treating this analogue information as if it were 

digital. Conversely, the information coming out of the computer 

is digital, and this has to be converted into analogue form if a 

continuously varying output is required. 

Typical examples of devices which provide analogue in¬ 

formation are thermometers, pressure gauges and electrical 

meters using needles. As we move into a computerised world, 

some of the traditionally analogue means of measuring informa¬ 

tion are already being converted into a digital form. Take a 

digital watch, for example. A watch with second, minute and 

hour hands is an analogue device. It doesn't give you the time 

in numbers but as a continuously changing pattern in space. By 

contrast, a digital watch tells us the time directly in numbers. 

Analogue and digital. 

In the analogue devices (the watch 

with hands and the wall 

thermometer), time and 

temperature change continuously. 

In the digital versions, at any 

instant they are given a number 

which can change by a minimum 

discrete amount (say by one 

second in the case of the digital 

watch or one tenth of a degree in 

that of the thermometer). 

In our daily life, we don't see these two ways of presenting 

information as being that much different. But to a computer the 

difference is vital, and it must find some way of converting the 

analogue to the digital. 
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The two graphs illustrate 

the ideas further. 

Top - To the naked eye the 

analogue thermometer produces a 
continuously increasing 

temperature, represented by a 
smooth curve. 

Below: The electrical 

thermometer's analogue output 

voltage is read every minute and 

converted into a number (digitised) 

in the converter. The computer 

receives a stream of l's and 0's 

corresponding to the number. To 

the computer, the temperature 

appears to jump up every minute 

and stay constant in between. 

[Temperatures could, of course, be 
sampled more frequently] 

m 
w 

Analogue to digital conversion involves measuring the value 

of the analogue quantity - e.g. temperature - at regular intervals 

- and converting the measurement into a number of pulses 

corresponding to that measurement. For example, assume that 

the temperature of an oven increases by 10°C every minute, as 

in the graphs below. If the temperature was measured every 

minute a series of numbers would be produced - 10, 20, 30, 40, 

50, 60 - each one corresponding to the temperature at that time. 

This, basically, is how the computer handles analogue data. A 

converter measures the variations (e.g. of the voltage from an 

electronic thermometer) at regular intervals, say once a minute 

or a thousand times a second, and presents the measured data 

to the computer. If the computer knows the time, between each 

measurement, it can build up a digital version of what's going on. 
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These are very simplified examples of what really happens. 

But they do illustrate the fact - a very important fact - that the 

computer can not only handle information presented in the 

'accepted' way, but also any form of information as long as there 

is a way of converting it into digital form. This means that even 

complicated forms of information - sound waves, for example - 

can be analysed by a computer. Similarly the output from the 

computer can be in practically any form required. 

Another example 
of conversion 

To explore this business of converting information into and out 

of the computer's binary digital form further, look at the way the 

computer uses an ordinary cassette tape (the kind you buy with 

music recorded on it) to store its binary digital information. 

Basically, the information stored in the computer's internal 

memory is read out fairly slowly and put onto the tape. This 

cannot be done directly as tapes respond to sounds within the 

Digital to analogue conversion when 

a program is stored on a magnetic 

cassette tape. The 'OY and TV are 

recorded as analogue tones of 

different frequencies. 

frequency spectrum that we can hear - that's what cassette 

recorders have been designed to do. The data has first to be modi¬ 

fied, and one of the easiest ways is to represent a 0 by one fre¬ 

quency tone and a 1 by another. When the cassette is played back 

through the computer interface, the reverse process happens. 

This business of analogue and digital conversion may seem 

complicated but for the computer it is a great deal easier to g,o 

through this process and obtain objective information from 

something like a thermometer than it is to go through the in¬ 

finitely more difficult process of understanding human beings 

and their language! Much of the rest of this book is about just 

that: the way the computer succeeds (and, in some directions, 

still fails) in understanding its human masters and what they 
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want from it. In this chapter, we'll tackle this problem by looking 

at the half-way house of computer languages. In Chapter 6, we 

will look at the business of voice input and output. But for a 

start a comparatively easy operation for the computer: printing 

a single character in the form we like to see it. 

The computer 
makes a letter 'D' 

The dot matrix printer at work. 

The pins strike the ink ribbon and 

thus make an impression on the 

paper. Then the print head moves 

on a fraction and the process is 

repeated. 

Of course, there is a very simple way of making a letter 'D'. You 

make a pre-formed letter, like the 'D' in a typewriter, and you 

tell the computer's printer to produce an impression of it through 

a form of impact printing. That works fine, except you need a 

separate piece of metal or plastic for each letter and character 

you want to put on paper. After a while a practical machine 

starts to run out of characters. It will generally manage to provide 

all the characters on a standard keyboard in one typeface, but 

what if you want to produce Arabic or Chinese characters, or do 

graphic illustration? 

One kind of printer popular with microcomputer owners 

works in a different but more versatile way. It consists of 

a row of pins - or in some cases just one pin - which strike the 

paper to produce dots. A processor in the printer sends a stream 

of Is and Os, and each makes the printer print a dot or miss one 

out. Printers like this print seven dots - or, in the better machines 

nine - close together in a vertical row. They will then move the 

print head along a dot's width and print another selection or all 

of the seven dots. By doing this several times they build up a 

letter; by doing it a whole lot of times they can print a line 

of text. 
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On receiving a completely different pattern of Is and Os, the 

same print head can print all kinds of fancy characters - includ¬ 

ing Arabic and Chinese. 

Programming 
languages 

Machine language 

Just as there are many human languages, so there are many 

computer languages. These have developed in a similar way to 

human language. For example, the earliest men probably had a 

limited vocabulary and were therefore able to communicate 

limited concepts. As man developed so did his language; as he 

became more sophisticated so more abstract concepts could be 

discussed. Similarly, when children are learning to talk they use 

a few words to describe everything - as they learn more, and 

their needs become more complicated, so their language becomes 

more sophisticated. 

The same thing has happened to computer languages. In the 

early days, people programmed using the computer's binary 

code, or what we call 'machine language . When this became 

difficult, mnemonics were used to make life easier. This is called 

'assembly-language' programming. Finally, there are the 'high- 
level' languages like BASIC, FORTRAN and ALGOL. These are 

much more similar to everyday language, and are translated 

directly or indirectly into the computer's machine code using the 

computer's firmware. BASIC is the language most often used to 

introduce programming, which we will look at in some detail in 

Chapter 4. Few microcomputer owners will be interested in 

actually programming in the low-level languages, but for the 

sake of completeness, here is an idea of what it involves. 

This is the language which the computer actually understands 

deep down inside itself. When we use a higher-level language 

the computer itself translates our instructions into machine 

language. Some computers can be programmed directly in 

machine code. It is tedious and time consuming as you can see 

from the following simple program of Is and Os: 

10100101 00100000 

01100101 00100001 

10000101 00100010 

This is the series of instructions which make the computer 

actually add two numbers together, and is written in the machine 

code of a popular microprocessor. It is clear that more compli- 
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Hexadecimals 

A hexadecimal keyboard on a 

computer which can only be 

programmed in machine code. 

Pushing 'E' produces the code 1110, 

the equivalent of the number 14. 

cated tasks would be very difficult to program. One way of 

simplifying it is to replace each group of four binary digits with 

a rather more compact code called 'hexadecimal. 

The word hexadecimal refers to a counting system based not on 

10s or even 2s but 16s. There are 16 numbers that can be defined 

by four Is and Os - starting with 0000 and finishing at 1111. The 

table below gives them all, together with the decimal equivalent 

and the hexadecimal code. 

Decimal Binary Hexadecimal 
0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 C 

13 1101 D 

14 1110 E 

15 mi F 

You'll notice that we ran out of digits for the hexadecimal 

column. As we were working in 'base 16', instead of'base 2' for 

the binary and 'base 10' for the decimal numbers, six other 

symbols were needed. The letters A to F are used. 

Hexadecimal numbers can be used in the same way as binary 

ones, and easily replace them. For example the 8-bit binary 

number 1010 1110 can be written as the hexadecimal number 

AE. Each group of four binary numbers is represented by one 

hexadecimal number, and vice versa. Converting between the 

two is easy with the aid of a table. (Doing the same between 

decimal and hexadecimal is far more difficult.) 

If we look at our example of machine code and replace the 

eight digit groups by their hexadecimal equivalents we would 

then get the following: 

A5 20 

65 21 

85 22 
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This is easier to read, but just as difficult to understand! If the 

codes on the left are replaced with mnemonics representing 

the hexadecimal instructions, the program now becomes: 

LDA 20 

ADC 21 

STA 22 

Or in English : 

Load the Accumulator with the contents of address 20 

Add the contents of address 21 to the number in the accumulator 

Store the answer in memory location 22 (which should ring a 

bell - see page 87). 

The programmer has to know the first number he wants to use is 

in memory address 20, the second in 21 and answer in 22. 

Assembly 
language 

Going one stage further we could call the two numbers ONE and 

TWO. We could also call the program ADD. It would now look 

like this: 

ADD LDA ONE 

ADC TWO 

STA RESULT 

As long as the computer knows where the program started in 

the memory - identified by the label ADD - and what memory 

locations have been allocated to ONE, TWO and RESULT then 

the program should work. This is obviously a very simple ex¬ 

ample and in practice things are more complicated. A whole 

range of translation programs have been written, and these are 

called 'assemblers'. These convert the assembly language pro¬ 

gram into the binary machine code and thus the assembly 

language codes can be typed in at an ordinary keyboard. 

High level 
languages 

There are a whole host of high-level languages, and most have 

been written for one particular type of application or another. 

For example, ALGOL has been written for general applications, 

COBOL for business applications, FORTRAN for mathematics 

work and BASIC for general-purpose introductory programming- 
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The latter is the easiest to use on small computer systems, and is 
consequently the most popular. Unfortunately there are many 
different forms - or dialects - in many of these languages. Which 
one your particular computer understands depends upon the 
software which it uses to translate the BASIC program into its 
binary code. This makes things difficult if programs written for 
one computer system are tried out on another. They will be 
incompatible and will need translating. 

Which language 
should you use? 

A high-level language like BASIC is more efficient in program¬ 
ming time, and is much simpler to use than assembler. Other 
programmers can also understand what has been written, which 
is useful if you want to exchange programs. Assembly language 
and machine code, on the other hand, give the programmer the 
ability to use the computer to its fullest capacity. 

In general, BASIC is most suitable for 'interactive' applica¬ 
tions where the operator and computer want to 'talk' to each 
other. Simple calculations, games, and other general-purpose 
programs - such as training programs - are easier at this level. 

Assembly language, on the other hand, is more suitable for 
the control of peripherals and input/output routines, and pro¬ 
grams within the computer system. It also makes maximum use 
of the small memory capacity of microcomputers. 

High-level languages are usually the easiest method for the 
majority of personal computer owners to use. Programming in a 
high-level language such as BASIC is considerably quicker than 
in assembly language. Machine coding is very time-consuming 
to write, but machine-code programs usually run faster than 
programs written in high-level languages. 

Putting words 
inside 
the computer 

We've said that the computer handles characters - letters and 
numbers, as well as signs like *, / and so on — quite as much as it 
does arithmetic. We've only talked about binary, though, as if 
the computer is getting ready to do arithmetic. Stop for a 
moment to see how the computer puts characters into a code of 
binary Is and Os. Remember, arithmetic in binary isn't really a 
code: it's just a different number base for counting than the 10 
we use most of the time. When we put characters into binary it 

really is used as a code. 
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Since we use the same 8-bit (1 byte) binary characters to 

stand for both numbers and characters, we have to tell the 

computer which we are storing. To avoid taking up part of the 

code, this is generally done in the address of the location in 

which we store the byte. In that one byte of information, we can 

easily find codes for each character on the standard QWERTY 

keyboard (very easily, you might say, reflecting that there seem 

to be nearly 10 times too many). 

The 'QWERTY' keyboard. 
Each key can produce one of two 
codes: one when the shift key is 
untouched - giving, say, '1', and 
'9' - and one when it is held down 
- giving 'V and 4-' and 

Do we really need so many? Well, there are 26 upper case 

letters and 26 lower case (remember, a computer is a very stupid 

thing: 'A' is quite different to 'a'). There are 10 numbers (0 to 9) 

and 35 odd characters like ", ', &, £, etc. The machine also needs 

characters for 'invisible' symbols like 'space' and 'end-of-line'. 

In one way and another, there isn't a lot of change out of 128 

characters - which is just how many you can represent using 

7 bits (27 = 128). 

Aha! says the alert reader: 'I thought we were talking about 

8 bits' (28 = 256). This is perfectly true. The reason for the dis¬ 

parity is that one bit is saved up to cope with possible mistakes 

caused by sending these characters down noisy, crackly tele¬ 

phone lines. The eighth bit can be set to 0 if there are an even 

number of Is in the character; to 1 if there are not. In this way 

the computer at the other end of the line can check to see whether 

there's been a garble. If there has, it can ask for a repeat. This 

eighth bit is called the 'parity' bit. 

We won't explain exactly what codes the computer uses for 

which characters, but it is worth mentioning that these codes, 

when looked on as binary numbers, correspond to the alphabetic 

order of the characters that are being encoded. A is 'smaller' 

than B, and so on. This allows whole words to be 'counted' and 

compared with others. This technique is used when sorting 

words into alphabetical order, or pulling all those starting with 

X, for example, from a list, or in the telephone directory program 

in Chapter 1. 
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The limits to the 
hardware ? 

One of the most important things about the microelectronic 

technology which lies behind today's generation of computers 

is its smallness. The electronics is 'micro', the computers are 

'micro', everything is 'micro'; and they are all getting even 

smaller. Already people in Japan are talking about putting the 

power of an IBM 370 - a computer that fills a large room - onto a 

single chip a quarter of an inch square. What's the point? you 

may be wondering. Do we really need a powerful computer 

that's so small it could get lost in your pocket? Would not a 

microcomputer be just as useful - or useless - if its processor 

were six inches or a foot square instead of a quarter of an inch ? 

The reason why smallness matters is buried deep in econom¬ 

ics and physics. To see why, we first have to take a look at what 

a chip is and how it is made. 

A close look 
at chips 

A chip, say a microprocessor, is simply a very great many elec¬ 

tronic switches which control each other in various ways. You 

could make a device which did the same things rather slowly if 

you had the money, patience and space, out of old-fashioned 

post-office relays. Each switch on a chip is a microscopically small 

transistor, similar to the transistors in a radio but on a minute 

scale. Transistors are solid-state devices: that is, they have no 

moving parts. They are made of a material that acts as a semi¬ 

conductor - that is to say a substance which can allow electricity 

to flow under some conditions but not under others. Most chips 

today are made of silicon, and areas of the silicon are 'doped' 

with impurities to turn them into semi-conductive devices. 

When the chips are operating, only minute amounts of currents 

are used, which enables the transistors to be crammed very close 

together without overheating. 

The usefulness of a processor or a memory made up of some 

tens of thousands of these transistors depends on two things: 

1 How many there are. 

2 How fast they work. 

The speed of operation depends on two things: 

1 The actual operating speed of a transistor, the time it takes to 

switch from on to off, or vice versa. 

2 The time it takes to send the resulting signal to the next transistor. 
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Stages in the Manufacture 

of silicon chips. 

Top left: A wafer of pure, 

polished silicon is inspected in 

dust-free conditions. Next it will be 

heated to form an oxide coating 

and covered with a photosensitive 

emulsion. 

Top right: A 'photographic mask'. 
This contains a repeating pattern of 

minute lines which are exposed 

onto the silicon. Where the light 

falls, the emulsion changes and can 

be dissolved away, leaving an 

exposed area which can be 

chemically treated in various ways: 

etched away, coated with another 

substance or impregnated with 

a 'dopant'. 
Centre left: The treated disks of 

silicon are exposed to a 'dopant' - 

like the element Boron in this 

ionising chamber. The dopant 

changes the electrical properties 

of the silicon. 

Centre right: Testing the chips. 

Each rectangle is a chip one of 

hundreds on the surface of the 

treated wafer. Minute, precisely 

aligned needle-like probes make 

contact with the connecting points 

and all the circuits on the chip are 

put through their paces. The chips 

that 'pass' are separated and then 

packaged up (see page 39). 

Bottom: The surface of the chip, 

showing the way that these 
processes produce layer after layer 

of change to make up the final 

integrated circuit. The top layer 

consists of metal connecting 

wires which are 'condensed' on 

to the surface. 

The smaller the transistor is, the quicker it works; and the 

shorter and narrower the connecting lines between transistors, 

the quicker they work. 

The process of putting the various devices onto silicon is 

done rather like printing on paper - we'll come to it in more 

detail below. However, for the moment what matters is this: just 

as a printing works can only print a certain number of acres of 

paper a day - a number that is determined mainly by the initial 

investment in machinery - so a silicon chip factory can only 

produce a certain area of silicon a day - an area limited by the 

amount of expensive equipment it has. It turns out that the cost 

of a chip is mainly proportional to its area, and has very little to 

do with how complicated it is. In other words, it is just as 

expensive to produce a 6-in diameter wafer of silicon carrying a 

single transistor as it is to put 400 devices on it, each consisting 

of 100,000 transistors. (American chip makers talk about the 

area of silicon they can process as the 'Real Estate'.) 

We can now see the reason why smallness is important in 

microelectronics. Since it doesn't make much difference to the 

final cost how many transistors go on a chip, the more there are 

the cheaper each one is - or you can offer more computing power 

at the same price. If that were the only advantage, it would be 

well worth going for smaller devices. 

However, there are other advantages too - as the transistors 

get smaller, and the lines thinner, the chips become proportion¬ 

ally even more powerful. A new device, with lines half as wide 

as an old one, other things being equal, can have eight times as 

many components at the same cost. 

Of course, there is a limit to how small we can make the 

devices. Apart from the difficulty of drawing the lines, the com¬ 

ponents of the chip behave differently when built at a very 

minute scale. We can, however, expect to keep on making more 

tightly packed, more powerful chips until they reach roughly 

200,000 times the power of today's. Since device densities have 

roughly doubled each year since 1960, at that rate we might 

expect the pocket computer to have the processing power of a 

quarter of a million of today's microcomputers by 1990. 

The smaller the devices, the more problems there are in 

making perfect chips, and the higher the reject rate. Rough 

calculations suggest that halving the line width (increasing the 

power of the device by a factor of eight) reduces the yield of 

usable chips from 30% to 1%. To overcome this chip makers 

may have to do some lateral thinking, and try an entirely new 

method of mapping the pattern of devices onto the chip. 
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At the moment chips are made using a photolithographic 

process. As the lines get narrower, however, visible light be¬ 

comes an unreliable medium; its wavelength is too long, and the 

lines get fuzzy at the edges. The next step will be to use X-rays, 

which have a smaller wavelength, or electron beams. 

Future hardware 
and software 

There is still a lot of mileage in miniaturisation. When the 

practical problems get too great, the hardware engineers have a 

lot more extraordinary ideas up their sleeves - everything from 

using light particles instead of electrons, to cooling the whole 

computer down to near absolute zero. But is more computing 

power really what we need ? 

In time, we can expect to find the power of large mainframe 

computers on a single chip. Big libraries will be written into 

read-only memory, so that a piece of equipment the size of a 

calculator may well contain the complete Encyclopaedia Brittanica, 
or its equivalent. 

However, as we sketched at the start of this chapter, the 

problem is not so much compressing information-storage and 

increasing computing power; it's knowing how to use the 

computing power when you've got it, which is the role of the 

software provider. Many computer people believe that dev¬ 

elopments in software, in learning how to put to use the extra¬ 

ordinarily powerful machines we already possess, will be far 

more important than further developments in hardware over the 

next 10 or 20 years, in other words, thinking of ingenious new 

ways to program the computer. There is every chance that the 

next 20 years of computing may be even more interesting and 

surprising than the last 20 years. 

At this point we've reached a position where we're ready to 

look at just what we can program the computer to do, and how 

we go about it. 
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Understanding 
programming 

what computer program languages are. In this chapter we're 

going to take one particular language, BASIC, and look at how 

it is used - at what is involved in writing some simple programs. 

First, though, a word about the language we've chosen. 

BASIC 
BASIC means 'Beginner's All-purpose Symbolic Instruction 

Code'. It was originally developed at Dartmouth College in the 

USA as a high-level language that would be easy to learn and to 

teach. It was mainly intended for people who knew nothing about 

computers but were keen on using them. Since then BASIC has 

been further developed and become extremely widespread 

throughout the world. Hundreds of thousands of different com¬ 

puter programs have been written in BASIC, many of them 

available in books and magazines. Its recent rapid increase in 

popularity has stemmed from the speed with which it can be 

learnt and from its ready availability on microcomputers. Most 

microcomputers, and many larger computers, have software 

which enables BASIC programs to be run on them. 

In some people's eyes, BASIC is not the world's best pro¬ 

gramming language but it is one of the most approachable - 

especially for beginners, as its full name implies - and that is one 

reason why it has been chosen as the main language for the BBC 
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Computer Literacy Project. One of BASIC's virtues is that the 

various commands lead on very simply from ordinary written 

language. What follows is an indication of how the language can 

be used: it is not intended as a course in how to write BASIC 

programs - another part of the BBC Project does that. 

However, if you can struggle through and follow this 

chapter you stand a good chance of being able to write programs 

yourself, and then there is no substitute for trying it out on a 

computer of your own, in your own time and at your own pace. 

There are many different sorts of programs you can write in 

BASIC but even if it isn't the best language for every program - 

just as any one microcomputer won't be the best for every con¬ 

ceivable application - it is a flexible language. You may find you 

would like to learn other languages later, but you will get quite 

a fair way on BASIC alone - even if using it is sometimes like 

getting a Frenchman to understand your English! 

There's BASIC, 

and BASIC, 

and . . . 

One of the problems with BASIC is that, rather like English, 
it is a language which can be spoken in many dialects. Different 
dialects in computer languages use different words and symbols 
to mean the same thing; sometimes, too, they let us do different 
things. Sadly, unlike in English, where someone from Yorkshire 
can understand someone who comes from Somerset, computers 
working in BASIC will only 'run' if the appropriate dialect is 
used. Luckily, at the simplest end of the language most of the 
instructions and rules are common to most dialects, so what 
follows should apply to many microcomputers on the market. 

We must stress, though, that we are trying to illustrate what 

programming is about, not to teach you all about it. If you have 

a computer and want to set about some serious programming y°u 

will need much more detailed information on what your par¬ 

ticular computer can do, and which dialect it understands. As a 

general illustration, you should find this chapter helpful but for 

a detailed guide you will need to refer to the instructions that 

accompany your machine or to do a course on programming like 

the one associated with the BBC project. 

Some of the attractive things which computers can produce 

in the way of graphics output or sound can also be controlled 

using BASIC. However here the various instructions involved 

are most likely to be unique to the particular machine you are 

using. Because these and other more sophisticated instructions 

are 'machine specific' - to use the jargon - we will not deal with 

them here. 
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The fundamentals Some things are common to all languages, including BASIC. They 

all have some way of dealing with the four fundamental activities 

on which nearly all programs are based: 

Getting things into and out of the computer. 

Comparing things. 

Deciding if something is true or not, and, if so, doing one thing 

or, if not, doing another. 

Doing something a number of times until some condition is met. 

These are the basic abilities the language has. What differs 

from one language to another is the way it sets about doing them. 

Earlier on we looked at the three things the processor can do 

in a computer: add, subtract and compare numbers. When a 

program in a high-level language - like BASIC - is running, every 

part of the program is translated automatically by software in¬ 

side the machine into simple steps which involve the processor 

doing just those three things and it's possible to use a language 

like BASIC without knowing anything about what happens 

inside the 'black box'. 

You will remember that the computer can only deal with one 

instruction at a time, and that it needs to know in what order to 

deal with the instructions in a program. Virtually every dialect 

of BASIC uses one simple and very useful tool to help it do this: 

it numbers every line in the program. 

LillC numbers *n Pr°grams we write you will see that each instruction, or 
group of instructions, has a number. The computer starts at the 

lowest number in the program and works its way through. It 

doesn't necessarily carry out the instructions in strict numerical 

order, though. Instead, it can be told to jump from one to another. 

In fact, computer programs written in BASIC tend to look like a 

game of snakes and ladders. Simple programs just start at the 

beginning and go through to the end but most useful programs 

are not like that! Instead, 'ladder' instructions tell the controller 

to shift upwards to a later line number and 'snake' instructions 

slide it back down again. 

Incidentally, line numbers in BASIC are usually written 

going up in 10s. The reason for this is a very practical one - if 

we want to insert extra lines at a later date, it's then possible to 

do so. We'll see all this later when we come to look at ways of 

making programs easier to understand. 
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The ins and outs 

i 

2 

1 

2 
3 

PfciN r 

Everything we 'tell' the computer we have to 'input' into it; and 

everything the computer tells us it has to 'output' to us. Of 

course, there are different ways of getting information into and 

out of a computer, but we'll assume we are putting information 

in by typing it in at a keyboard, and the computer is giving up its 

replies on a screen. Two practical things to note: 

When the computer is switched on it will display a 'prompt' - 

some word or symbol on the screen which shows when it is ready 

and waiting for a command. We will ignore prompts in most of 

what follows. 

Every micro has a button labelled ENTER or NEWLINE or 

RETURN. This is produced whenever a 'packet' of information 

typed at the keyboard has to be 'posted' to the computer. Again, 

on the whole we will not indicate the points at which this button 

needs to be pressed. 

The first thing we have to do, then, in getting the computer to 

do something is to give it instructions (unless they are already 

inside the computer, of course). Let's say we want our computer 

to add 3 to 4. We would type in an instruction. What would that 

look like? Well, it would look pretty much like: 

3 + 4 

We've forgotten a couple of things, though. Most important, we 

don't have any way of finding out what the answer is! In fact, 

we'd never just tell the computer to add 3 + 4. We would always 

tell it to do something with the answer. Do what? It might: 

output it to us 

store it somewhere for use at a different point 

use it immediately for some operation. 

If we type PRINT 3 + 4 and push the RETURN or ENTER button 

then the computer answers immediately: 7. 

What does PRINT tell the computer to do? It doesn't tell the 

computer to add 3 to 4: the + sign does that. What it does is 

to tell it to output the result. It is one of the peculiarities of this 

language that we use PRINT when we mean output, even if it's 

not printed output we want but words on a screen. 

Suppose we want it to do something more complex. We can 

join together a whole series of instructions like PRINT 3 + 4 

with line numbers in front to show the order in which they are 

to be done. 
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10 PRINT 3 4-4 

20 PRINT 3 + 6 

A SEQUENCE OF 

STORED INSTRUCTIONS 

A sequence like this is a program and it is not executed immedi¬ 

ately - it's stored. The individual instructions in the program are 

called statements and, naturally, the numbers in front are the line 
numbers. To execute the program you have to type the command 
RUN. What RUN does is to transfer the control of the computer 

from the operator (you) to the stored program. The computer is 

no longer waiting for you to tell it what to do; it follows the 

instructions in its stored program. 

RUN will tell the computer to go to the lowest numbered 

line in the program (line 10, in this case), and work through 

until it reaches the end. Then it'll display READY, to show it's 

ready to do something else. (Note: in some dialects the program 

should always end with a statement END or STOP.) 

When an instruction like RUN is entered by the operator 

without a line number, to be carried out immediately, it's called 

a command. When it's part of a program it's called a statement. 
So in BASIC, PRINT, for example, can be used as a command or 

as a statement - depending on whether it's the operator (you) or 

the program that's in control at the time. 

So, we have two operations in our short program: PRINT and 

+ . We don't include the RUN command in the program itself, 
though we need it to make the program work. All the keywords 

like PRINT that the computer recognises we will write in capital 

letters, to distinguish them from other words we use in the 

program and because many computers expect keywords to be 

typed as capital letters anyway. 

When we RUN our program, then, what will the computer 

output? Try it yourself, if you have a computer to use. What 

you should see on the screen is: 

READY 

RUN 

7 

11 
READY 
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Filling out 

the dialogue 

That's fine as far as it goes, but it doesn't go very far, does it? 

7 what ? we might be thinking to ourselves. Perhaps it would be 

better if the computer output read: 

3 + 4 = 7 

5 + 6=11 

Let's modify our program. We would have to write this: 

10 PRINT "3 + 4 ="; 3 + 4 

20 PRINT "5 + 6 ="; 5 + 6 

Running this program will produce just that result. But how? 

Numbers and 
characters 

1 

2 

You'll have realised that the vital difference between the first 

3 + 4 and the second 3 + 4 is the inverted commas " ". To 

make this clear, we have to draw a distinction between numbers 

and characters. What's the difference? Take, say, '123'. As 

characters, that's a 1, a 2 and a 3. As a number, it's a hundred and 

twenty-three. Anything between inverted commas is called a 

'string and the computer regards it as just a sequence or string 

of characters without any special meaning. 

Letters are characters too, and the inverted commas mean 

that the computer will keep whatever's between them, numbers 

or letters, exactly as it is. Instruction keywords between the 

inverted commas will also be treated as characters, so the com¬ 

puter won't take that first as an instruction to add anything 

together. 

We can use this convention to make the computer print just 

about anything. Then, by using punctuation marks like the 

semicolon and the comma between print statements we can 

display the words on the screen in different ways. Here are some 

examples: on the left are the programs, on the right the results 

of running them: 

The programs The results 

10 PRINT "BBC, LONDON" BBC, LONDON 

10 PRINT "BBC," BBC, 

20 PRINT "LONDON" LONDON 
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3 10 PRINT "BBC, 

20 PRINT "LONDON" BBC, LONDON 

4 10 PRINT "BBC", "LONDON" BBC LONDON 

5 10 PRINT "BBC, "LONDON" BBC, LONDON 

You will see that punctuation marks between inverted commas 

are ignored as instructions; they are merely part of a string of 

characters. So in example 1 above, the comma after BBC is not 

significant as an instruction to the computer. The same is true in 

example 2, only here there are two PRINT statements and the 

computer prints them on separate lines. Example 3 has a semi¬ 

colon after the inverted commas. This instructs the computer to 

print the next thing on the screen right up against the first. So, 

punctuation marks outside pairs of quotation marks are able to 

be instructions to the computer; those inside are not. 

Example 4 uses a comma instead of a semicolon. This tells 

the computer to separate the print statements by about a quarter 

of the width of the screen. (It's like the tabulator on a type¬ 

writer.) 

Example 5 produces the same result as example 1 but has 

two print statements separated by a semicolon. The semicolon, 

as we have seen, prints one right against the other. Notice that 

to avoid the result BBC, LON DON a space has to be included here 

before LONDON in the second statement, or after BBC, in the 

first. These rules may appear a little strange at first but you 

should soon find them becoming clear when you see how they 

are applied. 

Replying It would be a move forward if we could get the computer to say 

hello to us personally. Of course, we could do that by putting 

our name into the computer program. But we can also do it by 

putting our name as data for the program to use, as it's running. 

You will remember in Chapter 2 how we distinguished 

between instructions and data, and we said that (broadly speak¬ 

ing, and with some exceptions which we will come to later) the 

data is put into the program while it is running. So far we've 

been talking about putting the program itself into the computer. 

Now let's think about putting the data to the program. 

We use another instruction to tell the computer to obtain 

some 'input', and this time it's just what you would expect: 
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INPUT. It tells the computer to do two things: to wait for some 

input at that point in the program, and to display ? on the 

screen - so we know we've got to input something. 

Just as the computer has to do something with that answer, 

so it has to do something with the input: find somewhere to put 

it. And before we see how the INPUT statement works, we must 

look at the business of 'locating input'. 

Variables 

luorms - 

As we said earlier, one very important job the program language 

and the associated software have to do between them is to find 

a place to put all the information when it is not actually being 

processed. 

In BASIC, we don't have to identify a storage location where 

the information will be put. In other words, we don't have to 

tell the computer, 'Slots 34789 to 34850 in the memory are 

empty: put this word in there.' But we do have to tell the pro¬ 

gram to make room somewhere to store the information, and we 

do this by setting up 'a variable'. A variable is the name we give 

to the location. The idea of the variable is one of the most im¬ 

portant in computing. Mathematicians will find no difficulty 

with it, but others might. To help, here is another analogy. One 

way of thinking of a location is to think of it like a box or a pigeon 

hole with a name on it. The name tells you what the name of the 

box is but not what is inside it. What goes inside the box can be 

changed but the name of the box cannot. In the computer 

program, the box with its name is the variable. The variables can 

have different values in just the way that the box can have 

different things inside it, but it can only have one value at a time. 

In a BASIC program there can be two kinds of variable - two 

kinds of 'box'. One is called a 'numeric variable' and it can only 

have a value represented by a number. The name of the variable 

must begin with a single letter, followed if necessary by a 

number or the rest of a word. In some versions of BASIC only 

the first two letters of the word will be significant (this means 

that if we were to call one variable 'age' we should not call 

another variable anything beginning with 'ag'). 

The other kind of variable is called a 'string variable'. A 

string variable, unlike a numeric variable, can be anything we 

like: a 'string' of characters - whether they are letters or numbers 

or both. Providing we enclose them in quotes, numbers and 

symbols will be treated as characters by the computer. It won't 

change them, and can't do any arithmetic on them. The contents 
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of string variables must always be put in inverted commas and 

to let the computer know what kind of variable we want, all 

string variables must end with a dollar sign #. Below are some 

examples which should help to make this vital but confusing 

state of affairs clearer. 

Numeric variables 

Name 

Can be one or more letters or a word, eg A or AGE or a letter 

followed by a number, ega2 

Value 

Can only be a number, eg85 or 85.23 

String variables 

Name 

Must end in # 

Could be a word, eg name#, or a letter, egN# or letter + number, 

egn2# 

Value 

Anything in quote marks, eg "Father Christmas", "Father 

Christmas, age 85" ,"85 years" 

If we now go back to our input command and tell the computer 

to input our name, we need to make available a string variable, 

since names are not numbers. We can then use commands we 

have already met to make the computer say hello to us. 

10 PRINT "WHAT IS YOUR NAME" 

20 INPUT name# 

30 PRINT "HELLO, name# 

And some notes of explanation: 

Line 10 

When we use the INPUT statement, all that is going to appear on 

the screen is a question mark. If we want to know what we have 

to input, we have to tell the computer to ask us. That is what this 

line is doing. 

Line 20 

You will see that we don't have to tell the computer to set aside 
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Decisions and 
branches 

a location called name# When we first use the location name 

name#, the computer will automatically do this. All we have to 

tell the computer to do is wait for the input, and then it will 

allocate it to the variable name# 

Line 30 

Look carefully at where the inverted commas come. We don't 

want inverted commas round the variable name#. If we did 

have them, what do you think the computer would print? Right 

- not the contents of the 'box' but its name, ie not Peter (or 

whatever your name is) but name# The semicolon tells the 

computer to print the words next to one another. So it's im¬ 

portant to leave the space after HELLO, 

We've now reached the point at which we can hold a conversa¬ 

tion with the computer even though we have to tell the computer 

in advance what to say! If we take that last programme again, 

and underline our side of the conversation we could see this on 

the screen: 

RUN 

WHAT IS YOUR NAME 
? 

JANE 

HELLO, JANE 

READY 

That takes us quite a long way but before we go on to the next 

stage, actually solving a problem on the computer, we must take 

a look at the most important aspect of programming: telling the 

computer to make decisions. 

Let's take a new problem as our example for this section: check¬ 

ing passwords. 

If you have ever used one of the new cash dispensers which 

are appearing in the walls of some high street banks you will 

know that it is necessary to enter a personal code as well as your 

cash card before you can withdraw cash. If you fail to give the 

right code after a few attempts, you may lose your card, while 

if your reply is right, you can go ahead with the withdrawal. 

Many computer systems use a security system of passwords or 

passnumbers before individuals can gain access. 



The flow diagram can work for 

simple passwords or numbers. 

In real life, below, two personal 

code numbers are used for extra 

security - one on the plastic bank 

card and one which the customer 

keys in. 

Ask for 
today s 
password 

Receive the new 
password and put 
in a location 
or 'box' called 
PASSWORDS 

Ask tht 
customer 
the password 

Receive the answer 
and put it in a 
location or box 
called ANSWERS 

NO VIS 

Print a 
rejection 

message 

(iive the 
i ustomer 

access 

We can draw a flow chart to show how such a system could 

work. This particular system might be used, for instance, at the 

beginning of a bigger computer program, to enable you to allow 

only those customers who know the password to use the pro¬ 

gram. What is more, you (the programmer) could change the 

password as often as you want. 

Most systems give the customers several attempts, but that 

is a refinement we'll leave till later. You'll see that we have: 

two points at which data is put in, 

a point at which the two pieces of data are compared and a 

decision point at which the computer has a choice of routes to 

take. 
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How do we program this? Let's give the program first, and 

explain the new features afterwards : 

10 PRINT "PROVIDE TODAY'S PASSWORD" 

20 INPUT password# 

30 CLS 

40 PRINT "PLEASE GIVE PASSWORD" 

50 INPUT answer# 

60 IF password# = answer# THEN GOTO 90 

70 PRINT "HELP! CALL THE POLICE!" 

80 STOP 

90 PRINT "CORRECT. YOU MAY PROCEED" 

Lines 10 and 20 you should be able to follow. Line 30 contains a 

new instruction present in some dialects of BASIC - CLS - which 

clears the screen, in this case for obvious reasons. But what 

happens in line 60? We have three new key words: IF, THEN 

and GOTO, as well as another instruction - the symbol = 

These all mean just what they say. If whatever follows the IF 

command is true, then we are given special instructions. If it is 

false, these instructions don't apply, and we carry on to the next 

line of the program. These special instructions tell us to 'jump' 

and go to line 90. So in this case, we wouldn't carry out the 

instructions on the lines between here and line 90 at all. 

Note: In some better BASICS it is possible to rewrite this program 

more simply using an ELSE instruction: 

60: IF password# = answer# THEN PRINT "CORRECT. YOU 

MAY PROCEED" ELSE PRINT "HELP! CALL THE POLICE". 

In fact, lines 70 and 80 form the right-hand branch of our 

program and line 90 is the left-hand branch. We must put STOP 

or END at Line 80 otherwise HELP! CALL THE POLICE would 
immediately be followed by CORRECT. YOU MAY PROCEED* 

There are only two choices: either the data in the two locations 

is the same, or it isn't. We could, however, have several IF . . • 

THEN statements in a row if there are more than two possibilities. 

We'll see this in later programs. 

We must always put some other statement after the IF 

statement, so that we know what the special instructions are. 

This will usually be either a THEN or a GOTO or both, as we 

put in our program above. In some dialects, we don't really 

need the THEN in line 60, because the GOTO tells us what 
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to do. Some dialects demand THEN every time, so we'll leave 

it in. Some insist on GO TO and will not run if the space is left 

out, instead telling you there's an 'error'! 

Note: If a computer doesn't like something you've written into 

the program it may do one of a number of things: 

Print SYNTAX ERROR or MISTAKE when you try to run the 

program. 

Print a longer error 'message', giving details of where the error 

is - for example, what line it is in. 

Refuse to let you enter the line in to your program at all until 

you have found the error. 

Print an error number (which you need to look up). 

Looping the loop One of the other fundamental things we can ask a computer to 

do is to repeat something a fixed number of times or until some 

condition is met. For example, we could modify our password 

program to give the customer three chances at the password 

before sounding the alarm. 

This time we'll put the line numbers from the new program 

against the relevant boxes in the flow diagram on the next page. 

10 PRINT "PROVIDE TODAY'S PASSWORD" 

20 INPUT password# 

30 CLS 

40 LET mistakes = 0 

50 PRINT "PLEASE GIVE PASSWORD" 

60 INPUT answer# 

70 IF password# = answer# THEN GOTO 120 

80 LET mistakes = mistakes + 1 

90 IF mistakes<3 THEN GOTO 50 

100 PRINT "HELP! CALL THE POLICE!" 

110 STOP 

120 PRINT "CORRECT. YOU MAY PROCEED" 

130 END 

We've only introduced one new keyword, LET, but we've done 

quite a few new things: 

Line 40 

LET, used like this, is the way we name a new variable. We are, 
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10 

'Input' new password 
and put it in a 
location called 
'PASSWORD#' 
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as it were, naming a 'box' which we are going to use later to 

count the number of wrong guesses. And this is a numeric 

variable, so its name, mistakes/ doesn't have a $ sign. Initially 

there have been no guesses, so the value of mistakes is set at 0. 
Line 70 

This time, we do have two ... IF statements running, because 

there are three possibilities: the customer is right, he's wrong 

but has another chance, or he has been wrong three times. 

Line 80 

This is how we change the value of a variable using the LET 

instruction. (The new value in the 'box' is the old value plus 1.) 

This often causes confusion because mistakes = mistakes + 1 

looks like a maths equation that doesn't balance. It isn't like that. 

It means, effectively, let the new value be equal to the old score 

plus one! 

Line 90 

Here we introduce another condition and if it is met, the program 

returns to line 50. The condition asks if the number in the 

mistakes 'box' is less than 3. If it is, then the customer can have 

another go. If it is equal to 3 then the condition is not met and 

the program goes on to line 100. The ( sign means 'less than'. 

Note: If <( means 'less than', in a similar context ) would mean 

'greater than', = would mean 'equal to' and \ ) would mean 

'not equal to' - in other words 'either less than or greater 

than'. 

If you have a computer, try out these programs, putting in 

different right and wrong answers. If you don't, you can still 

try them out by imagining how the computer would work down 

the program if you put in various answers. 

Documentation We've gone quite a fair way towards having the computer tell 

us what it's doing and what input it wants. What we haven't yet 

done is to provide a full explanation of what each part of the 

program does in the program itself. 

You may feel we don't need to in these short programs but 

if you have stored a number of programs on the same cassette, 

say, or if you have written a very long and complicated program, 

it is a great help to provide a little more explanation. We call 

these explanations 'documentation' and we use a new keyword, 

REM (for 'Remark') to put them into the program. 
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The computer doesn't do anything whatsoever with what we 

write inside a REM statement. It just skips over it when the 

program is running. Nor does it print out the remarks. To find 

out what they are, we have to use yet another command, LIST. 

Typing in LIST will make the computer list the program in 

its memory. To be a bit more selective, we can type, say, 

LIST 50 

and the computer will just display line 50. Or 

LIST 50, 80 

and it will show lines 50, 80 and all the lines in between. This 

command is useful to alter a line which contains a mistake. 

We'll tie all this together by going back to one of the 

problems we used in Chapter 2, the test on the times table, and 

seeing how we might set about programming that. 

A child's 
maths test 

You'll remember that in Chapter 2 we drew up a very simple 

flow chart for this, and added a more complicated one for doing 

the test by hand. Now we'll draw up one for doing it on the 

computer, and add two extra features. We'll have the computer 

talk to the child by name, and we'll limit the number of wrong 

answers the computer will accept on any single question to four. 

1 REM Program to test multiplication 

2 REM by asking random questions 

3 REM using numbers between 1 and 12 

10 PRINT "What is your name" 

20 INPUT name)! 

30 PRINT "Hello, name$;" - Let's try this question" 

35 REM Generate two random numbers 

40 LET a = RND(12) 

50 LET b = RND(12) 

55 REM Set counter for errors to zero 

60 LET count = 0 

70 PRINT "What is a ; "x"; b 

80 INPUT answer 

90 IF answer = a*b THEN GOTO 170 

100 LET count = count + 1 

110 PRINT "Wrong." 
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115 REM Check if there have been four errors 

120 IF count = 4 THEN GOTO 150 

125 REM Offer another try if count is less than 4 

130 PRINT "Try again. You've had count; " tries." 

140 GOTO 70 

150 PRINT "You've had four tries. The answer is a*b 

160 GOTO 180 

165 REM Advise if answer is correct 

170 PRINT "Well done, " name# 

175 REM Offer additional question 

180 PRINT "Want another go" 

190 INPUT reply# 

200 IF reply# = "YES" OR reply# = "Yes" OR reply# = "yes" 

OR reply# = "y" OR reply# = "Y" THEN GOTO 40 

210 PRINT "That's all!" 

Say 'that's 4 1 

160 
tries'and ^ive 

the correct 
answer 



4 - 

Lines 40 and 50 are designed to generate random whole numbers 

between 1 and 12. It's like throwing dice, electronically. We 

will not attempt to explain how this is done but the random 

number generator is a useful technique. (Note: In some BASICs 

you will need to type in something more complex to get this to 

happen.) In line 90, the symbol * means 'multiply' to the com¬ 

puter. In line 70 we wrote x, but as it was enclosed in quotation 

marks the computer does not treat it as an instruction but 

as a string character. In line 200, the computer has just asked 

the child if he or she wants another go. The child might type in 

YES, yes, Y or Yes and the computer asks itself if any one 

of these has been entered. The computer will only recognise the 

reply if it is exactly in the form it has been told to look for. 

Because the computer is incapable of guessing your intention, 

any sort of reply other than these (e.g. 'all right', 'if you like') 

will send the computer to line 210. Note the way the new key¬ 

word 'OR' is used. 

There are many conversations we could have with the 

computer if we ran this program, depending on what our replies 

were. Take one 'run' of the program. Our replies are indicated. 

READY 

RUN 

What is your name 
? 

George 

Hello, George - let's try this question 

WHAT IS 5 x 6 
? 

35 

Wrong 

Try again. You've had 1 goes 

25 

Wrong 

Try again. You've had 2 goes 

30 

Well done, George 

Want another go 
? 

NO 

That's all 

READY 
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It's hardly an Oscar winning dialogue but it's a real conversation 

and every response the computer makes shows us it has taken 

notice of the last thing we said to it. 

We could improve this program in many ways. We could 

ask which table the child wanted to answer questions on and 

ask a set number of questions (perhaps checking to make sure 

we didn't repeat any). We could keep a running total of the 

number of right and wrong answers, and tell the child at the end 

of the test, with a suitable comment ('That's very good, George', 

'Not bad, George', 'Sorry, you failed' or whatever you fancy). 

What other improvements can you think of? With the pro¬ 

gramming tools you've already acquired, you should be able to 

think of ways to try to program quite a few of them for yourself. 

You may have noticed that there is a small flaw in the program, 

and there may be others. In 'computerspeak' mistakes in logic 

or in the actual coding of the program are called 'bugs'. Often 

these may go undetected for some while because the program 

works perfectly well, most of the time. 

The flaw here is a trivial one. When in line 130 the program 

says PRINT "Try again. You've had count; " tries" this is fine 

when the count of the number of tries is two or three. But if it 

is the first try, the program will produce Wrong. You've had 

1 tries which is ungrammatical to us but not to the computer. 

This could easily be dealt with; can you think how? 

There is a vital point to be made here: it is very difficult to 

check programs for every conceivable eventuality. The larger 

the program the more difficult it is and many programs being 

sold (or published in magazines) contain bugs. Some of these 

may be programming errors - an obscure IF-THEN branch, for 

example, might lead to a computer syntax error if one condition 

is met but the program might run perfectly well otherwise. 

One simple example might be a program which invites a 

response Y or N in answer to the question 'Do you want another 

go?'. Suppose the person running the program types in 'You 

must be joking'. The computer may well treat the first Y as 'Yes' 

and act accordingly. 

10 33s. .^'Trrf'k 
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Three more 
techniques 

The next program is a jargon generator' - an amusing way of 

producing high-sounding phrases like 'viable on-going situa¬ 

tion', to add a touch of bogus class to memos or correspondence. 

We won't give you a flow chart for this example, but we had 

better explain what we will be doing in the program. 

We are going to take three different lists of 'jargon' words, 

with 24 words in each. The first two lists will contain adjectives, 

and the third nouns. Then we will set these up in three lists in the 

computer. Next we will pick random words from each set to 

make up jargon phrases using one word from each list. (For this 

we will use the random number generator we used in the times 

table example.) 

The program introduces three new ideas: 

1 Putting data into the program itself 

So far, we've talked as if all the data we need for our program is 

going to be put in while the program is running. Often, though, 

you'll have all the data for your problem available when you are 

writing the program. If there is quite a lot of it, you will find it 

more convenient to put the data into the program itself. 

This situation is the big exception to the general rule we 

outlined in Chapter 2, that the program is a set of instructions, 

and the data is what the instructions are carried out on. In this 

instance, the program contains the data too! 

Two new keywords are used: DATA, which tells the com¬ 

puter that what follows is just that - a list of bits of data - and 

READ, which allocates the data into whatever variable 'boxes' 

we choose to name. Data and read commands are particularly 

useful when we want to enter lists of things into the program. 

2 Arrays 

In computing, an array is the name given to what we might 

call a list. It is a list of variables, each place in the list being like a 

separate 'box'. As before, the variables can be numeric or string 

variables. Imagine a postman delivering letters to a row of box¬ 

like houses in the same street. Each house has a different number. 

The letters will have the same street name but different numbers 

for the different locations. 

Similarly we might call our array in the computer A$(10)/ 

meaning we had ten 'boxes' in the 'list' called A$ and each of 

the boxes could have different contents. (Note: Sometimes the 

number of boxes could be eleven because the first box can have 

the name A$(0), just to add to the difficulty!) 
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In the following program we are going to make room for our 
three lists of words by creating three arrays. We need to tell the 
computer to make room for the arrays and to do that we use a 
DIM statement (DIM for dimension). In other words we tell the 
computer that we want it to make space available of a particular 
dimension for some data. We then 'read' the data into the boxes 
one at a time using our third new idea as given below. 

3 

1 
2 
3 

4 

The 'for-next' loop 
This is a second useful way of looping the loop (see page 117) and 
is possibly the most difficult idea to grasp but it is the last one 
we'll be introducing! 

Described in words theFOR-NEXT loop goes something like 
this: For every value of a variable from 1 to, say, 24 do some¬ 
thing and then alter the value of the variable by one. Go on doing 
whatever it is until the value of the variable is 24, then stop. In 
the case of our lists of data we are saying to our 'postman': 

Here is a list of data with 24 items. 
For every value of n from 1 to 24. 
Read the nth bit of data and put it in the appropriate nth box in 
the row of boxes called a$ • For example, put the 5th bit of data 
into the 'box' named A$(5) • 
Then increase the value of n by 1. In other words go to the next 
value of n which in this case is 6 and then take the 6th bit of data 
and put it in the box named A$(6) and so on. 

For. CHtctcs =. I To 4. 
(five tooRM- 

In our 'jargon generator' program this procedure is used for each 
of the three lists of words to get them in the computer. We then 
have a procedure for picking one of the words from each list at 
random and then printing the three one after the other to pro¬ 
duce the jargon phrase. Here's the program: 

5 REM JARGON PHRASE GENERATOR 
10 REM RESERVE SPACE FOR ARRAYS 
20 DIM a#(24) 
30 DIM b$(24) 
40 DIM c$(24) 
50 DATA basic,divergent,programmed,operational,affective 
51 DATA child-centred,multi-,emotive,disadvantaged,on-going 
52 DATA informal,ultra,interdisciplinary,cognitive,relevant 
53 DATA correlated,extra-,innovatory,viable,supportive,elitist 
54 DATA micro-,creative,advanced 
60 REM FILL FIRST ARRAY WITH DATA 
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70 FOR x = 1 TO 24 

80 READ a$(x) 

90 NEXT x 

100 DATA meaningful,procedural,significant,democratic 

101 DATA sociometric,consultative,empirical,unstructured 

102 DATA implicit,perceptual,psycholinguistic,coeducational 

103 DATA reactionary,motivational,academic,conceptual 

104 DATA socioeconomic,hypothetical,ideological,theoretical 

105 DATA developmental,compensatory,diagnostic,experimental 

110 REM FILL SECOND ARRAY WITH DATA 

102 FOR y = 1 TO 24 

130 READ b$(y) 

140 NEXTy 

150 DATA situation,over-involvement,evaluation,components 

151 DATA disfunction,methodology,quotients,re-organisation 

152 DATA rationalisation,activities,communication,resources 

153 DATA synthesis,validation,techniques,consensus 

154 DATA maladjustment,sector,criteria,autonomy,analysis 

155 DATA polarisation,objectivity,strategy 

160 REM FILL THIRD ARRAY WITH DATA 

170 FOR z = 1 TO 24 

180 READ c$(z) 

190 NEXT z 

195 REM GENERATE 12 JARGON PHRASES 

200 FOR m = 1 TO 12 

205 REM CHOOSE 3 RANDOM NUMBERS 

210 LET a = RND(24) 

220 LET b = RND(24) 

230 LET c = RND(24) 

235 REM PRINT RANDOMLY SELECTED WORDS FROM 

ARRAYS 

240 PRINT a$(a);"";b$(b);"";c$(c) 

250 NEXT m 

360 END 

Lines 20/30/40 

Here we are naming our three arrays. Since they will contain 

characters, we have to add the $ sign. The DIM (for DIMension) 

statement tells the computer that these arrays, and how much 

space to reserve for each. Each array here will consist of 24 loca¬ 

tions. We are effectively naming the variables, too. The first 

variable we use will be a$(l) through to the last variable which 

will be c$(24). 
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The mechanical equivalent of the 

computer's jargon generator. 

(The idea first appeared in the 

'Times Hducational Supplement'). 

Three concentric, cardboard discs 

can independently be spun round. 

As they stop the words on each 

disc come to rest in a random way, 

producing the jargon phrases. 

Lines 50/54 

We tell the computer when one piece of data stops and the next 

starts by putting in the commas. Our DATA statement, of course, 

tells the computer that everything that follows it is data. 

Line 70 

This starts another little loop. We are going to repeat it 24 times. 

Line 80 

A READ statement usually follows a DATA statement. It tells us 

where to put the data. And the a$ tells us we want this data to go 

into array a$. The READ statement tells the computer to start 

with the first piece of data, and to run down the list* of data in 

sequence, unless we put in some other instruction. So we are 

'posting' a piece of data into each 'box' in the array (24 times - 24, 

because that's what we made x on line 70). 

Line 200 

Now all our data is placed, we start yet another loop to use it. 

This one we will carry out 12 times. 

Lines 210/220/230 

These are instructions telling the computer to pick a word at 

random from each array. We are calling these random locations 

a, b and c. So a will be a location in array a$, b in array b$, and 

so on (a, b and c are random whole numbers up to 24). 

All clear? Let's see what we might come up with when we run 

the program. 

READY 

RUN 

correlated developmental communication 

emotive diagnostic evaluation 

advanced democratic objectivity 

creative democratic disfunction 

emotive implicit rationalisation 

correlated empirical re-organisation 

multi-socioeconomic rationalisation 

ultra procedural techniques 

on-going unstructured resources 

emotive diagnostic components 

extra-psycholinguistic autonomy 

programmed meaningful maladjustment 

READY 
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We have now introduced most of the basic rules and conventions 

of BASIC. Many of the concepts are difficult to grasp at first but 

become clearer as they are put into practice. Courses on BASIC 

introduce the concepts in a much more leisurely way than we 

have been able to do and reinforce the understanding of each one 

with many exercises and examples. We will finish with one last 

example. 

Choosing a route You may have realised that we could use this kind of approach, 

but with numbers as well as characters, to solve the 'route¬ 

finding' problem we looked at in Chapter 2. We'll close this 

chapter by seeing how we might approach it by following the 

solution we outlined in the flow chart on page 62. 

The flow diagram and the program which follows may appear 

to offer an absurdly complex way of deciding how to get from 

A to B when there are only seven different routes. However, it 

should be seen as the core of a program which could be enlarged 

in various ways to deal with many different places and many 

different routes. At the various points in the program where data 

(details of fares, length of each journey and so on) is introduced 

it would be possible to introduce more data than we have at 

present and, provided that we altered the size of the arrays 

accordingly, this would enable the program to perform a very 

large number of comparisons and become really useful. Thinking 

laterally for a moment, it would also be possible to use this kind 

of program for other purposes - for deciding on the choice of a 

hotel, for example. The variables could be the type of room 

(double, single, with or without bath), price, the star rating of 

the hotel and so on. 

This time we will break the program up with a description 

of what we are doing. In a properly documented program some of 

these descriptions would be condensed down into brief 'REM' 

statements which would be part of the program. (However, it 

should be noted that REM statements do use up a lot of memory 

space in a program.) 

First, we reserve space (dimension) for our lists (arrays) of 

things which vary. These variables are the length of time for each 

journey, the method of travel (bus, train, etc.), the fare and the 

preferred way of travelling. There are seven different routes so 

we will need to set aside seven empty 'boxes' in each array by 

using the DIM statement. 
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10 DIM time(7) 

20 DIM fare(7) 

30 DIM method $(7) 

40 DIM preference(7) 

The data which needs to be put into these arrays is as follows: 

Route number (R) Time (hrs) Fare (£) Method Preference 
1 1.50 8.00 Train 2 
2 2.20 7.50 Bus + train 3 

3 2.30 6.50 Bus + train 3 

4 3.00 5.00 Bus 4 

5 1.00 10.40 Plane 1 

6 2.50 6.00 Bus 4 

7 2.30 5.50 Bus 4 

We now need to fill the empty arrays with data. To do this we 

use the 'data' and 'read' instructions and use a 'for-next' loop 

seven times to fill up each array. 

50 DATA 1.5,2.2,2.3,3.0,1.0,2.5,2.3 

60 FOR R = 1 TO 7 

70 READ time(R) 

80 NEXT R 

90 DATA 8.0,7.5,6.5,5.0,10.4,6.0,5.5 

100 FOR R = 1 TO 7 

110 READ fare(R) 

120 NEXT R 

130 DATA train , bus + train , bus + train, bus , plane 

131 DATA bus , bus 

140 FOR R = 1 TO 7 

150 READ method $(R) 

160 NEXT R 

170 DATA 2,3,3,4,1,4,4 

180 FOR R = 1 TO 7 

190 READ preference(R) 

200 NEXT R 

(Note: the method array is a string array and in some machines 

it is necessary, unfortunately, to put inverted commas round 

each piece of data.) 

Next, we have a rather curious looking couple of lines. Later on, 

when the program begins to run, we might want to compare 
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fares one at a time to see which route has the lowest fare value of 

the fares looked at so far. This lowest value is then held in a 

variable called lowest. But what happens when the first route 

is looked at? The program requires it to be compared with 

something. In this program we set the value of the variable to an 

arbitrary value higher than anything likely to be found in the 

routes to follow. It could be any value we like, and the person 

who wrote this program has chosen to make the value 9999. As 

the first fare goes through, it is compared with 9999 and found 

to be lower, so it becomes the new value of lowest. 

The same argument applies to a variable called optimum. 

210 LET lowest = 9999 

220 LET optimum = 9999 

We need to ask whether the customer is most concerned about 

the cost of the journey or the time it will take. The answer to the 

question should either be COST or TIME. If it is 'Cost' then the 

program branches one way, if it is 'Time' it branches another. 

But just in case some other answer has been given to the question 

the program asks the question again. 

300 PRINT "What are you concerned about 

310 PRINT "COST or TIME"; 

320 INPUT choice # 

330 IF choice# = "COST" THEN GOTO 330 

340 IF choice# = "TIME" THEN GOTO 330 

345 GOTO 320 

350 PRINT "What is the " ; choice #;" limit"; 

360 INPUT limit 

370 IF choice# = "COST" THEN GOTO 500 

Lines 350 and 360 next ask the customer what limit he wants to 

set for cost or time. This value is then held in the variable limit. 

Next, depending on whether or not the choice earlier was cost or 

time, the program branches. Line 370 decides which way to go. 

If the condition is met, then the program goes to line 500; if not, 

it carries on. It will carry on to the next line if the choice was 

'TIME'. Note the semi colon at the end of line 310 to make the 

'?' which is produced by the INPUT statement in line 320 print 

up against the end of the question produced by lines 300 and 310. 

It also means that the answer to the question is entered on the 

same line as well. 



0* ' 

best = 

The next section of the program is used if the choice was 

'TIME'. It asks for every route 'is the time for this route larger 

or smaller than the limit the customer has chosen?' If it is smaller 

then the route qualifies for more consideration and the search is 

on for the cheapest route which meets this requirement. 

400 FOR R = 1 to 7 

410 IF time(R)>limit THEN GOTO 480 

420 IF fare(R)>lowest THEN GOTO 480 

430 IF fare(R)<lowest THEN GOTO 450 

440 IF preference(R))optimum THEN GOTO 480 

450 LET lowest = fare(R) 

460 LET best = R 

470 optimum = preference(R) 

480 NEXT R 

490 GOTO 600 

In this section lines 400 and 480 establish the FOR-NEXT loop, 

the value of R being the route number - from 1 to 7. Line 410 

asks if the time for a given route is greater than the limit set by 

the customer. If it is, it sends the program down to line 480 which 

says 'next route, please'. Line 420 asks if the fare is greater than 

the lowest found so far. If it is, then the route is rejected and the 

next route is look at. 

In line 430 if the fare is less than the lowest then the program 

goes to line 450 and the fare for this route becomes the new value 

of the variable 'lowest', the 'best' route takes the value of R for 

this route, and the 'optimum' way of travelling is the preference 

for this route: 1 for plane, 2 for train and so on. 

Finally we come to line 440. The program only reaches line 

440 if the fare is neither greater than nor less than the lowest 

value found so far (in other words it is the same). We agreed in 

Chapter Two that if two routes cost the same amount then the 

decision about which one is the better depends on the preference 

about transport. In this instance, the program asks if the 'pre¬ 

ference' for this particular route is higher in value (i.e. less 

desirable) than the preference for the previously found best 

route. If it is, the route is rejected. If it is lower, then this route 

becomes the 'best' so far. When all the routes have been looked 

at the program goes to line 490 and this directs it to line 600, 

which we'll move to in a minute. 

If, earlier, the choice in line 370 had been 'COST' the program 

would have ignored lines 400 to 490 and gone to line 500. This 

section of the program does exactly what the previous section 
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did only comparing first the cost of each route with the limit and 

then looking for the quickest route amongst those which qualify. 

500 FOR R = 1 TO 7 

510 IF fare(R)>limit THEN GOTO 580 

520 IF time(R)>lowest THEN GOTO 580 

530 IF time(R)<lowest THEN GOTO 550 

540 IF preference(R)>optimum THEN GOTO 580 

550 LET lowest = time(R) 

560 LET best = R 

570 optimum = preference(R) 

580 NEXT R 

The last section of the program looks at the results of all these 

comparisons and prints out the best route. If no route has met 

the fundamental requirement that it is cheaper than the limit or 

longer than the limit set earlier in line 360 then the 'lowest' value 

will still be that arbitrary 9999 and the program prints out 'Think 

again, nothing fits'. Otherwise, if all is well it takes the value of 

the variable best (i.e. the best route number), the value of 

method# which has the value of the best route number and 

the values of the time and fare for this best route. 

600 IF lowest<9999 THEN GOTO 630 

610 PRINT "Think again - nothing fits" 

620 GOTO 300 

630 PRINT "You should travel by route"; best 

640 PRINT "using"; method#(best) 

650 PRINT "It will take ";time(best);" hours and" 

660 PRINT "cost ";fare(best);" pounds" 

670 END 

Here is a sample 'run' of the program: 

RUN 

What are you concerned about - 

COST or TIME? COST 

What is the cost limit? 6.5 

You should travel by route 3 

using bus + train 

It will take 2.3 hours and 

cost 6.5 pounds 

This program is by no means the last word on the subject! It 

could, for example, be modified relatively easily to print out the 
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route itself - in other words to say 'you should travel from 

London to Godminster via Camford'. The point is, of course, to 

give you some idea of how such a program could work, not to 

produce the most elegant program imaginable. 

By now you should have some idea of the kind of logic 

involved in writing a program in BASIC. Even if you do not feel 

capable yet of writing programs of the complexity of the ones we 

have just seen, you can get a good deal of pleasure from attempt¬ 

ing simple programs. As in any language, practice makes perfect: 

you could take a course in BASIC such as the one associated with 

the BBC project. The alternative to writing your own programs 

is to buy programs written by other people and run them on your 

own microcomputer. 

The next chapter is about the practical business of having 

and using your own machine. 

A Japanese travel agent. 

Although most Japanese offices are 

paper driven', the computer is 

rapidly taking over. Here they can 

plan railway routes for you and 

book hotel rooms in an instant 

using the new technology. 
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You and your 
microcomputer 
Why have over 100,000 people in the UK already bought their 

own computers when systems still cost from £50 upwards? Some 

of the users have a technical background but there are many 

more who had no knowledge of computers when they started. 

These include doctors, lawyers, postmen, housewives, teachers, 

restaurant owners, pharmacists - people from all walks of life, 

in fact, and their numbers are increasing all the time. 

Some have quite specific applications ready for the computer 

- often in connection with their jobs. A growing number of 

people are discovering that the microcomputer offers them a 

fascinating new interest - an intellectual challenge which is 

quite addictive. 

Schools are now obtaining micros and are finding that they 

can be used not just in the science and maths departments, but 

in English, geography, history, and even languages as well. 

Armies of schoolchildren now occupy their spare time writing 

programs and some countries are introducing computing into 

the curriculum for all children and students as an essential part 

of their education. 

Then there are those people who feel they 'ought' to know 

something about computers, who perhaps feel insecure in their 

jobs as new technology looms over the horizon and who want 

the security which comes with understanding. 

Others who've taken the plunge include the hobby enthusiast 

who prefers to put his or her own computer together - partly 

because it's cheaper that way, but also for the pleasure of doing 

the whole job alone from a computer kit. 

The programmable microcomputer can be a useful tool in a 

wide variety of areas but it is by no means yet the miraculous 

device which some people would claim. It's no good buying a 

£100 machine and expecting it to control your greenhouse or to 

keep all your household records in its memory or to be able to 

process and print out your letters. You can do a lot with a simple 

system and get a lot of fun out of it. However, for the professional 
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The BBC microcomputer in its 

simplest form, using a domestic 

television set as a display and an 
ordinary cassette tape recorder 

to record programs and to play 

them back. 

person with his eye on the future who wants to use the computer 

in his work, the writer who wants to build up a text processing 

system, the architect who wants to rationalise the calculations 

for tenders, the businessman who wants a cheap accounting 

system, it is important that the computer should be able to do 

a good job, and the cheapest hardware may not be enough. 

There is also the question of software - the computer may be 

physically capable of doing a job but there may not yet be a 

suitable program available which will enable it to do it. 

Before we look at some of the many things which low-cost 

microcomputers are being used for, let us look at what the 

simplest systems can do and how some of them can be expanded. 
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The simplest 
personal 
microcomputers 

So many advertisements for microcomputers are appearing in the 

press that the beginner, who has an interest but not much know¬ 

ledge, may be forgiven for feeling bewildered. Although to some 

extent when you buy a micro you get what you pay for, the value 

of what you buy may depend in the long run more on what soft¬ 

ware is or will be available and on the extent to which the 

machine can be expanded than on the basic equipment you get 

for your money. 

Well, what do you get for your money? Imagine you've just 

bought a typical small microcomputer. What will using it 

involve? 

The box containing the system most likely contains: 

1 A user guide, which should contain details of how to get the 

machine going and how to write simple programs. It will also be 

a reference book providing details of the use of the various 

instructions in the language - which will probably be BASIC. 

2 The machine itself, which will have a keyboard and various 

plugs and sockets at the back or underneath. 

3 A connection to the mains power supply which provides the low 

voltage on which the computer runs, either through a transformer 

which is inside the computer or in a separate box outside. The 

separate power supply is less convenient and involves yet 

another item to plug in. 

4 A lead to connect the computer to the aerial socket of the tele¬ 

vision set. 

5 A lead to connect the computer to a domestic cassette recorder. 

6 There may be a sound cassette tape supplied with the equipment 

containing some sample programs. 

Connecting the simplest system 

together. The leads shown 

a) Connect the microphone, 

earphone and 'remote' (cassette 

motor control) sockets on the 

cassette player to the cassette 

'interface' socket at the back 
of the microcomputer. 

b) Connect the UHF output socket at 

the back of the microcomputer to 

the aerial socket at the back of the 

domestic television set. 
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Switching on 
and getting going 

When the computer has been supplied with power and is con¬ 

nected to the television set through the normal aerial socket, the 

first thing that needs to be done is to tune the set for the computer. 

A microcomputer designed to work through a television set has 

within it a small transmitter which produces a signal which needs 

to be tuned in just like tuning in to BBC-1 or ITV. Most televisions 

have a spare tuning knob which can be used for this and once the 

set has been tuned in to the computer's frequency the tuning can 

be left ready for next time, without interfering with the present 

tuning of the set for ordinary television. The computer should 

produce some message on the television screen - like 'READY' 

or a symbol like ) and then it's a matter of fine tuning to get 

the clearest lettering. 

Ready : 
run 

The owl and the 
pussy cat 
went to sea 

Rtidy- 
rxm 

Tht owl and tht 
pussy cat 
Mnt to s«a 

The difference between lettering on 

a not very well adjusted colour 

television screen and that on a black 

and white monitor. The latter gives a 

high resolution and can be used for 

up to 80 characters to the line, which 

is required for word processing. 

Lettering on the television screen will not be quite as clear as 

the lettering produced by a video monitor. A video monitor is the 

kind of screen used in closed circuit television systems and does 

not have to be tuned to a television frequency in the way that a 

television set does. A serious computer user will probably use a 

monitor rather than a television, but it will only be possible to 

use such a screen if the computer has a video output socket. 

Equally, some more expensive computer systems come with their 

own monitors and they may not be able to run on ordinary tele¬ 

vision receivers. Black and white video monitors are fairly cheap 

but colour monitors are still relatively expensive compared with 

the domestic colour television set. 
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The keyboard If you are familiar with the keyboard of a typewriter the com¬ 

puter keyboard should not be much of a surprise. It will have 

extra keys, though, and a typical layout is shown below. 

II 11 11 f4 its. 11 ■ Hi mm wm 
fa1 BREAK 

m 
B 

II 

2 
% 
5 

& 
6 ^ si A \ 

B Q W E R T Y U 

IFd CTRL A S D 

(a < £ 

Z X C V B N M 

The keyboard of the BBC 

microcomputer, showing the 

(almost) standard typewriter layout, 

and the various specialised keys. 

Some of these are described in 

the text. The top row of keys are 

'user definable'; those on the right 

with large arrows are the 'cursor j 

control' keys. 

2 

3 

4 

The most important extra keys are: 

The RETURN or ENTER key which is used to enter a program 

line or a command alter it has been typed and has appeared on 

the screen. 

The CURSOR CONTROL keys - these are used to move the cursor 

around the screen. The cursor is the marker which shows the 

position on the screen where the next character you type in will 

appear. If you want to edit a line in a computer program it will be 

necessary to move the cursor around to the points where the 

changes need to be made. 

The BREAK key - this interrupts a program while it is running 

and enables you to run it again or continue programming. 

The DELETE key - this enables you to rub out the character you 

have just typed on the screen if you have made a mistake. 

Other keys on the keyboard have functions which are explained 

in the user guide which comes with the machine. Some of them 

may be 'user definable' keys, meaning that the user of the 

machine can decide (by typing in the right instructions) what 
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each key should do. Supposing, for example, that you are writing 

a program which uses the PRINT statement very frequently. 

You may want to save yourself the trouble of always having to 

type in the word PRINT, in which case a user definable key can 

be allocated to print the word for you. 

Writing 
and running 
a program 

Writing a simple program is now only a matter of carefully typing 

in the line numbers and the statements using the rules of the 

dialect of the language your machine understands. At the end of 

each line of program, press the RETURN button, and then type 

in the next line. 

When you have written a program type in RUN and press 

RETURN and the program should run. If you have made a 

mistake the program will stop and an error message or error 

number will appear on the screen. The error messages will either 

be self explanatory or else you will need to look each one up in 

the user guide to find what it means. 

Most computer manuals will have programs listed in them 

which you can type in directly yourself. The important thing 

here is to type them in accurately. Even a misplaced 'space' could 

cause the program not to run. 

Saving your 
programs - the 
cassette recorder 

Two kinds of connector. 

Left: With two 'DIN' plugs, 

jhght: With a 'DIN' plug and three 
jack' plugs. 

Once you have slaved for hours over the keyboard composing a 

program which actually runs - or typing one in from the manual 

or from elsewhere - remember that simply by accidentally 

switching off the computer you could lose the whole thing - the 

memory will be erased and all that effort wasted. This is where 

the simplest kind of backing storage comes in useful. The 

domestic cassette recorder can be used to store and replay all the 

programs you type in to the computer. 

Most machines will come with a lead to connect the computer 

to the recorder. (Make sure you have the right kinds of connector. 

The two most popular are shown. If you have the wrong sort a 

hi-fi shop should be able to provide you with an adaptor.) 

Assuming the recorder is properly connected, programs can 

be stored on a cassette by pressing the record and play buttons 

on the tape recorder and then typing a command on the computer 

to send the program. The recorder will then record the computer 

output as a series of bleeps. Some computers contain a 'motor 

control' which will switch the tape recorder's motor on when the 
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program is about to be recorded and off when it has finished. 4 
motor control is almost essential if, later on, you want to use the 

cassette recorder to store data as well as programs. 

Every program you record on tape will need to have a name 

so that it can be identified and distinguished from other pro- 

grams when you come to play it back. You need to give a name to 

the program at the time the command is given to the computer to 

send the program to the recorder. So if your program were the 

one to test a child's multiplication tables (from Chapter 4) you 

might want to call the program TABLES • The command typed 

in could be SAVE "TABLES" (followed by pressing of the 

RETURN button). The computer then sends the program to the 

recorder, preceded by a 'label' which in effect says 'this program 

is called TABLESIt will take a short while for the program 

to be recorded on tape and the recorder should not be touched 

until everything has been sent. Some machines make a noise 

through the loudspeaker while the program is being recorded 

and the end of the program will correspond to the end of the 

noise. In most systems a visual prompt on the screen will tell you 

when the recording is finished. 

In order to play back a program, run the tape back and type 

in the appropriate command - which might beLOAD "TABLES" 

and press return. The computer will tell you to play the tape and 

it then 'listens' to the tape until it finds a program labelled 

TABLES and then takes the program into its memory. If the 

program is not the first one on the tape the machine may well 

display on the screen the names of all the other programs it passes 

while looking for the one labelled TABLES • Once it has found 

and loaded the program the 'prompt' will appear and all you 

need to do is to type RUN and the program should work. 

At this point it is worth pointing out that though the cassette 

recorder is a cheap and cheerful way of storing programs it is also 

a source of considerable frustration to many microcomputer 

owners. Sometimes tapes fail to play properly. The volume 

control on the recorder may need to be set at a very precise level 

before programs will load, crinkles in the tape may cause im¬ 

perfect recording or playback, dirt on the playheads may cause 

trouble and it only needs one 'bit' of information to be incorrect 

for the program to fail to work. With practice, though, tapes can 

be made to work reasonably well and they are undoubtedly a 

cheap way of storing programs. 

One major irritation caused by tapes is their slow speed. If 

you have a number of programs recorded on one tape it's 

impossible to find the right one by listening to the tape yourself. 
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Sound, colour, 

graphics 

and movement 

L»~ t' 
High resolution graphics on the screen 

(from a music applications program). 

Other people's 
programs 

To the human ear all tape recorded computer programs will 

sound alike - just a screeching noise - so the computer will have 

to look at each one on the tape until it finds the right one unless 

you have an idea of how far into tfhe tape the program is, in which 

case you could run the tape to a position just before the program 

starts and run it from there. However, it is better to use short Cl2 

cassettes for your programs - do not be tempted to use cheap 

C90 or C60 cassettes. If you do, two things happen. First, record or 

playback errors become common and second you could spend a 

long time looking for a program. 

In Chapter 4 we looked at the simplest commands and instruc¬ 

tions in BASIC which most dialects will understand. In the case 

of the more recent machines coming on the market, some of the 

exciting things which you can do involve the use of sound, colour 

and graphics, three areas where individual machines almost 

certainly differ from one another. Instructions like PLOT, 

COLOUR, DRAW and BEEP enable you to draw lines on the 

screen, produce different colours and make sounds of different 

pitch (if the computer has a loudspeaker). 

Two examples of the kinds of program made possible by the 

use of these keywords are games involving collisons between 

moving objects on the screen and music programs, where it is 

possible to use the computer keyboard to compose music which 

appears as notes drawn on a musical stave created with graphics 

on the screen and which can then be played back as music 

through the computer's loudspeaker. 

One way of looking at the present microcomputer scene is to 

compare it with piano playing in the early days of the gramo¬ 

phone at the turn of the century. In those days, as now, a family 

might own a piano on which individual members of the house¬ 

hold could learn to play and get pleasure from playing, however 

badly they did it. The same family could also buy the newly 

invented gramophone records (or cylinder recordings) of pro¬ 

fessional pianists and enjoy those as well. The present micro¬ 

computer scene is similar; individuals can get enjoyment and a 

feeling for computing by doing a little programming themselves - 

however badly. In the same way that some people become very 

proficient at playing the piano so some will become reasonably 
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good programmers. At the same time it is now easy to buy pro¬ 

grams (applications programs) written by other people to run on 

your microcomputer. At present, rather like the early gramo¬ 

phone records, the programs are not very numerous and not 

always particularly good. However, just as the sophistication of 

the gramophone industry has grown over the years both in 

quantity and in the quality of what it offers, so the market for 

commercial microcomputer programs is likely to grow and their 

quality is likely to improve in the next few years. 

Continuing our analogy, commercial gramophone recordings 

were supplemented in the late 1920s by the advent of broad¬ 

casting which provided a new and 'free' source of music. In the 

computer world similar developments may also not be far off. It 

is quite possible now to broadcast 'telesoftware' using the 

teletext services offered by the BBC and IBA and in a similar way 

to obtain computer programs down the telephone line using the 

Post Office's Prestel system. The truth is that these are early days. 

The simplest commercial software which can be bought on 

audio cassette is loaded into the computer in the same way as 

programs you might write yourself. Problems arise if the software 

is written in a dialect of BASIC not recognised by your machine 

and this will continue to be a problem until there is some agree¬ 

ment over standardising BASIC itself. Other problems arise if the 

program is too long for the computer to handle because it fills up 

all its random-access memory. This brings us to the question of 

expanding the microcomputer system. Most microcomputers, 

other than the very cheapest, are capable of a good deal of expan¬ 

sion and of being able to link to a number of different 'peri¬ 

pherals'. Most of the examples of applications mentioned later in 

this chapter involve expanded systems, expanded in different 

ways depending on the application. 

Memory expansion Computer programs involving a lot of text use a good deal of 

memory and the first thing you may want in the way of expan¬ 

sion is to increase the memory of the machine from its initial IK, 

4K or 16K of random-access memory to a higher value. (K stands 

for kilo or thousand - well, nearly. IK of memory is actually 

1,024 bytes in the computer world, and 4K is 4,096 bytes [1024 

is 210 and 4096 is 212 . . . and so on].) Some computers can have 

their memory expanded by simply having extra memory chips 

plugged in by a dealer: others may need an expansion box to be 

connected to the machine. To give you some idea of how much 
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Peripheral devices 

Disc drives 

memory a program occupies, the route finding program in 

Chapter 4 occupies about 1.5K of random access memory. 

Besides RAM expansion some computers also have the 

capacity to expand the amount of read-only memory (ROM). 

Remember that the ability of the computer to understand BASIC 

instructions depends on a BASIC interpreter chip held in ROM. 

Other languages can also be plugged in so that there is a choice 

for the user. Alternatively, applications programs which are 

going to be used often can be frozen onto ROM chips and these 

can be bought and plugged in. Word processing programs are a 

good example. 

All kinds of devices can be connected to the computer to make it 

do different things if it has been designed to link up with them. 

Some are quite expensive compared with the computer itself and 

are only likely to be used in, say, a small business or professional 

application. The diagram overleaf shows some of the more impor¬ 

tant ones. 

The disadvantages of the cassette recorder can be overcome by 

use of 'floppy disc' units (see page 88) which enable a much 

larger amount of information to be stored and found very quickly 

indeed. These discs are magnetically-coated discs of thin plastic 

which are held in protective envelopes. When they are inserted 

into the disc-drive housings they are able to rotate and can be 

read by a recording/replay 'head' which can move over the radius 

of the disc and either 'write' or 'read' information at any part of 

the disc. 

Almost any serious application will require a disc drive unit 

or a pair of units and the cost of these and the electronics needed 

to link them with the computer will probably be more than the 

machine itself, though prices are expected to fall as more of them 

are sold. A good deal of business software is available on disc but 

it is very important to find out from a reliable, independent 

source what precisely is possible, what it is likely to cost and how 

well it works, before launching out into disc storage. 

Using a 5" disc drive unit. 

The removable panels beside the drive itself hide sockets for plugging in 

circuit cards which provide extra memory and other facilities. 
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printers 

An inexpensive thermal printer, 

right, which uses a special heat- 

sensitive paper. 

Expanding the system. 

Provided that the microcomputer has 

been designed to be expanded, a 

range of 'peripheral' devices can be 

linked to it. The most important of 

these are shown left. 

Games paddles 

Printers can be quite cheap or very expensive, depending on the 

quality of the print you want to produce. If all you want to do is 

to keep a written copy of your computer programs (by asking the 

computer to send the listings to the printer) a 'thermal' printer 

would do. This uses a special heat sensitive paper which changes 

colour where a heated spot on a moving print head touches it. 

Next in quality - and price - is a dot matrix printer (see page 

93). This kind of printer can provide print of quite an acceptable 

quality for printing invoices and sheets of sales data. It uses 

ordinary paper. 

The best quality printers are the 'daisy wheel' or 'thimble' 

printers used for word processing systems - in 1981, prices range 

from £1,200 upwards-produce impeccable quality print and can 

usually have interchangeable typefaces. Many of the printers on 

the market will run when connected to the microcomputer 

through a standard 'interface'. However, getting them to work 

properly and at the right speed initially may require the help of 

a technician - so, again, take advice. 

Games paddles are 'joystick' devices which can be plugged in to 

some computers to enable you to play 'bat and ball' games on the 
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screen. Many games can be played on the computer using the 

keyboard alone, so these games paddles are not essential if you 

want to use the computer for games. 

The ‘joystick' control. Moving the 

top of the stick causes the symbols 

to move around the screen in a 

similar path. 

Teletext 

and Prestel 

Both broadcast teletext and the GPO's Prestel services are sources 

of a great variety of information which can be received and dis¬ 

played on the television screen. Collectively they are referred to 

as 'viewdata'. 

Teletext uses a hitherto unused part of the television signal 

to send digitally-coded information through the air; Prestel sends 

similar information down the telephone line and then through a 

special adaptor into a television receiver. Teletext is free but 

is only able to transmit information in one direction; Prestel costs 

the user the price of a telephone call with additional charges for 

some of the pages of information supplied but it is possible to 

send information in both directions along the telephone line, 

which means that Prestel is capable of two-way communication. 

The digital data supplied by these services can be read by 

attaching decoding devices to the computer and can then be 
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Teletext. 

Top - The digital information which 

makes up the BBC's Ceefax service is 

seen here as a row of dots which 

seem to 'run along' the top two lines 

of the television picture. A suitable 

decoder converts this into pages of 

text on the screen. 

Middle - Ceefax editorial staff 

compiling pages - in this case an 

index and a financial page. 
Below - A Ceefax page of 

'Telesoftware' designed not to be 

read but to be loaded automatically 

into a suitably connected 
microcomputer, which can then run 

the program. This makes teletext 

capable of being a vehicle for 

'interactive' material. 
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stored in the memory. The data could be straightforward in¬ 

formation - like news, weather or stock market figures, or it 

could be an interactive computer program, in which case it is 

called telesoftware. Viewdata represents a way in which com¬ 

puter software will be distributed in the near future. Teletext 

will provide a free service; Prestel software could be commercial 

paid for through the telephone bill. 

Both Prestel and teletext are systems pioneered in Britain. 

The two systems have been developing independently but do use 

a common way of presenting information on the screen; the 

microcomputer with add-on teletext and Prestel decoders may 

be the means of bringing the systems together in a powerful 

new way. 

Analogue 
input/output 
devices 

How do you go about using your microcomputer to run your 

greenhouse, for example, or control a model train set or weigh a 

beehive (see page 75)? If you plan to try this sort of thing, then 

you will need a machine with at least one input/output 'port' - a 

connection point for adding input or output devices to the 

machine. This allows information to be sent to and from the 

computer in the binary form used by the processor, and thus lets 

you connect or 'interface' all sorts of things to the computer. 

Simple devices like switches need little interfacing as they 

are essentially binary devices. Thus burglar alarm systems lend 

themselves easily to computer control. In the other direction, 

equipment can be switched on and off fairly simply by signals - 

suitably amplified - coming from the computer. Computer sys¬ 

tems with internal timers or clocks obviously help here. 

If other signals need to be handled, special interfaces like 

analogue-digital converters are needed. Sometimes these are 

built into the microcomputer - we saw in Chapter 3 (page 93) how 

these convert varying voltages into equivalent digital signals, as 

required by the computer. This makes it possible for it, (or 
example, both to simulate sound and to manipulate and process it. 

Computers with the right analogue input/output devices can 

be used to control, and get information to and from various in¬ 

struments like temperature sensors or weighing devices. Thus 

they can become intelligent controllers in, say, a laboratory. 

There is a great deal of emphasis (particularly in education) 

on making use of the computer to control things, so it is very 

likely that the next few years will see a variety of control sensors 

and activators coming on to the market. 
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Chickens weighing in. 

A microcomputer application in 

farming. As each bird hops on to the 

perch its weight is recorded by the 

computer. In this way the computer 

builds up a complete picture of the 

spread of their weights. This can 

help the farmer (or the computer) 

to judge how much food to give and 

when the birds are ready for market. 

What can 
microcomputers 
be used for ? 

One very common area of application for microcomputers is 
playing games. We have become familiar with computer-based 
games in the amusement arcade — 'space invaders' is a good 
example - though more conventional games like noughts and 
crosses, chess, draughts, bridge and backgammon have also been 
adapted for the microcomputer. Games will become more popu¬ 
lar, since many of the newer microcomputers - especially those 
aimed at home use - have good graphics, usually in colour. Most 
games involve the use of graphics, probably using a colour or 
black and white television screen. 

Many of the games involving objects moving fast across the 
screen or involving a great deal of calculation on the part of the 
computer (like chess) have programs written in low-level machine 
language, but many of the others are written in BASIC. Books of 
BASIC games programs are on the market and some of them even 
help you write your own. 
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Stretching the mind. Computers at a Games are not only for amusement. It is quite fashionable 

chess tournament. among so-called computer experts to run down the playing of 

games on a computer. Most microcomputer users will tell you 

that one of the easiest and most pleasant ways of learning how to 

program is to get hooked on a game, want to learn how it works 

and then try to write your own. Among the reasons given by 

many computer professionals for joining computer clubs is that 

it is not possible to play games on the computer at work! If your 

prospective computer is to be used in the home it most certainly 

must have a games capability. This could mean an ability to have 

games joysticks' attached, and possibly sound output. The joy¬ 

stick allows the operator to move graphic symbols on the screen 

and some form of sound output adds that extra 'something'. 

Computer games can also be 'mind stretching'. Most desktop 

systems can now play a passable game of chess, backgammon or 

bridge, or other games of strategy. Many of the computer maga¬ 

zines devote a large proportion of their editorial space to games 

programs, and this is a cheap and easy way to keep your library 

up to date with the latest developments. 

The great thing about the microcomputer is its interactive 

nature. The computer will usually prove a worthy opponent, at 

whatever level of difficulty you agree on! 
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Educating yourself 

English primary school children with 

a low-cost commercial spelling tester. 

Computer-aided learning programs are available that can help 
with maths, physics, French, English and even computer pro¬ 
gramming. Now that equipment is becoming cheaper, schools 
and colleges are able to buy a computer for a modest amount of 
money. Even where budgets are being slashed, the computer 
seems high on the list of most schools' equipment requirements. 
Unfortunately the use of machines in schools is still limited by the 
lack of good software and the lack of teachers trained in their use. 
Cheap computers, though, can be bought by students and used 
in the home, and this is where a lot of parents will meet them for 
the first time. 

Those people who have been in the microcomputer business 
since it began - about five years - like to compare the impact and 
projected numbers of microcomputers to those of the pocket 
calculator. The availability of cheap pocket calculators has had a 
profound effect on the teaching of mathematics and science. 
Similar things are happening with computers and the impact on 
all areas of teaching could be enormous. 

There are several types of program used in education: 
1 drill and practice 
2 tutorials 
3 simulation or modelling 
4 a combination of these four. 

Drill and practice programs are used to help the student master a 
skill he has already been taught but which needs practice. We 
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saw a simple example earlier with the child's 'times table' test in 
Chapters 2 and 4. On a much larger scale, in many of the schools 
in Dallas, Texas, for example, microcomputers are used regu¬ 
larly in the classroom to reinforce the teaching of a whole range 
of primary maths skills. Students get tired or frustrated with this 
kind of program if they have to sit at the computer too long but 
they can be very useful, particularly if they free the teacher to do 
other things. In Dallas, each child gets about 15 minutes of con¬ 
centrated activity each day on the computer. The programs, 
written by the teachers themselves, make use of a wide variety of 
techniques on the screen. The computers address each child by 
name and can be programmed to test speed as well as accuracy, 
keeping a record of the child's performance which the teachers 
can refer to later. 

Tutorial programs are designed to teach subjects to students by 
providing them with pages of information and diagrams and then 
checking if they have understood by asking questions. If the 
answers are right the student gets directed one way; if they are 
wrong he gets directed another, possibly having the information 
presented a different way. These program-learning techniques 
have some limited value for particular groups of students needing 
to learn quite specific bodies of knowledge, computer program¬ 
ming itself being a good example. 

An eight-year-old Dallas schoolboy 

working on one of the many maths 

programs written by the teachers of 
the city. 

A Student at London's Royal College 
of Art working on a graphics 
tutorial program. 

r timm i 
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Simulation or modelling programs deal with real-world events 

which can be mimicked on the television screen. It is not neces¬ 

sary for the user physically to encounter the actual problem 

because data collected from the real world is often entered into 

the programs; the main aim is to develop decision-making skills 

as well as understanding. 

Good examples are found in science where, for example, 

students can perform experiments in chemistry and make predic¬ 

tions about the results of certain actions without the need to 

touch any apparatus. In physics, a circuit diagram can be presen¬ 

ted on the screen together with questions asking what would 

happen if particular switches were closed or certain components 

introduced. In another example, a simple simulation shows how 

gas molecules move around inside a box. By using the keyboard 

the student can see what happens to the molecules if the box is 

heated or compressed or a hole appears in its side. 

A 'ballistics' simulation game. 

Enemies on each side of the hill fire 

missiles at each other, into or against 

the 'wind'. Those playing the game 

have to estimate the angle of fire and 

the fire power needed to land on and 

thus blow up the opponent. 

One popular program starts with the words, 'If you stand on 

a tall enough mountain and if you throw an object fast enough, it 

will go into orbit.' Then the program asks you for your values of 

elevation and velocity, and calculates what happens. Another 

program shows planetary motion and the size and relative posi¬ 

tions of the planets in the solar system. The program can be made 

to simulate planetary motion between any two dates in history. 

Language teaching has not been forgotten, and most common 

languages are catered for. In Russian, for example, a program 
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Hangman 

Guess one of the remaining letters 

correctly and it will appear in the 

word. Fail, or spend too long 

thinking about it, and the gibbet 

man will be completed and your 

game will be lost. 

introduces you to the Cyrillic alphabet and then takes you 

through simple grammar and vocabulary problems. Most lan¬ 

guage programs are designed to teach vocabulary and grammar, 

but pronunciation will have to wait until good speech synthesis 

and recognition are implemented. 

To help teachers, special 'authoring' languages are being 

designed. These allow pages of information, containing both 

graphics and text, to be constructed far more easily than BASIC 

allows. Decision points may be programmed so that correct and 

wrong answers lead to different 'frames'. Whole programs may 

be written using these languages and then recorded, like BASIC 

programs, for later use. Author languages may be considered as 

the next stage in the hierarchy of high-level languages. 

Games programs are fun, as we have said, and educational games 

that are well designed help students to develop their thinking. 

Although there are thousands of these programs around, soft¬ 

ware development has not kept up with advances in hardware 

and the software that is available is fairly poor at the moment, 

although there are some good programs available in maths and 

science. This is to be expected, of course, but it is only a matter 

of time before programs get better, as more and more teachers 

gain experience in the use of computers. 

Business games are quite popular in management studies. The 

student is given all the information to allow him to make deci¬ 

sions about how to run a business. 'Chance' events like a fire, or 

sudden changes in commodity prices or interest rates, can be 

built in. 

For younger children, probably the most popular teaching 

'game' is a computerised version of Hangman. You can usually 

choose the level of difficulty, and how many wrong guesses are 

allowed before a gibbet and cartoon 'man' appear on the screen. 

Some of the better versions allow the teacher to change the word- 

list, so that groups of words relevant to the class can be used. 

Business applications When we come to consider the commercial use of microcomputers, 

the options are many and varied. Even at the domestic level, 

finance programs exist for keeping a check on your bank balance, 

calculating income tax returns, as an address and telephone file, 

diary-keeping and even cataloguing books and records. 

In a commercial environment, the investment of a few thou¬ 

sand pounds will usually pay for itself in one year. American 

studies have shown that any company with a turnover greater 

than £100,000 p.a. is losing money by not having a computer. 
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Inside 'The Chocolate Box' 

Phyllis Arrondale was introduced to 

computing only two years ago. She 

taught herself to write her own 

programs and now finds the 

equipment invaluable in running her 

small business because, as she points 

out, it enables her to know her exact 

financial position at any time. 

This does not mean that even smaller companies would not 

benefit from computerisation. Book-keeping is an obvious job for 

a computer. Large and medium-sized companies already make 

extensive use of computer technology, but microcomputers now 

make it possible for even small companies (including one-man 

businesses) to rationalise their book-keeping, order processing, 

current-account ledgers, invoicing, salaries, stock accounting, 

budget and so on. People who have invested in microcomputers 

include doctors, consultants, shopkeepers, stockbrokers, garage 

proprietors and people running restaurants and hotels. However, 

relatively simple microcomputer systems will not achieve much. 

With business applications, the main factor governing the choice 

of a system is not what the company is doing now, but what it is 

going to be doing in three or five years time. Thus 'expandability' 

has to be considered in a major purchase. 

Word processing For the system to work in a rational and convenient manner, 

it needs a lot of storage and this is the limiting factor in many 

microcomputer systems. Above all, well written - and easily 

modifiable - software is needed. 

After business accounting, word processing and information 

handling are the two most common uses of computers in the 

office, and both are being revolutionised by the microcomputer. 

It may be simple enough to write a letter, but typing an attractive 

and faultless text is difficult for most of us, unless we are trained 
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The word processor. 

This microcomputer doubles as an 

accounting system and a word 

processor. Foreground - a high 

quality printer prints out a letter. 

typists. A word processing system can be built around a cheap 

microcomputer to make the whole procedure much simpler and 

reduce frustration. Word processing essentially means that you 

type the text in the normal way on a keyboard connected to the 

computer, the text appearing on a screen and not on paper. With 

the assistance of the computer, you then correct and edit the text 

until it is exactly as you want it. After this, the computer linked 

to a printer supplies a perfect printout, with as many copies as 

needed, and the text can even be stored for later use usually on a 

disc - though cassettes can be used. Specially-written word pro¬ 

cessing software enables you to produce the text on the screen on 

command, to correct spelling errors, erase, add, exchange sen¬ 

tences or paragraphs and get a printed output. 

Typical word processors automatically break the text up into 

lines as you type. There is no need to hit RETURN at the end of a 

line. The preceding line is re-displayed justified' to the left and 

right margins. Lines can be centred with one keystroke, and set 

in bold typeface or underlined in mid-paragraph. The text can 

even be re-justified to new margins when necessary. Page head¬ 

ings and page numbers can easily be entered and pauses 

between pages and headings can be inserted during printing. 

As an example of how you can use your own word processing 

system, let us look at letters. For each letter, you have to type in 

your rough copy, edit it on the screen until you are satisfied, and 

then get a copy printed. If you have a large number of letters that 

are basically the same, you can also input an address list of the 

people who are to be sent the letters. In this way each letter will 

appear to be a personal one, despite the fact that the printout has 

been done with the aid of the computer. You can even store a 

number of standard phrases which can be called up when needed 

and put together, for example in a contract. 

Many letters we receive today have been addressed by a 

computer. The microcomputer can be used in the same way as 

large commercial computers to produce letters like these, and for 

storing, updating and printing names and addresses. It may be a 

list of members or customers - or perhaps even a list of Christmas 

cards to be sent. 

A word processing system can also be used for keeping mail¬ 

ing lists. A good mailing list program should contain search 

routines, to make it possible to find a certain person in the register, 

or to print out all those who live in a particular geographical area, 

or to sort in alphabetical order and so on. 

Professional word processing systems can cost anything up to 

£10,000 or even more. Using a microcomputer with a word pro- 
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cessing program allows you to get a long way for considerably 

less, although the range of facilities is limited. The peripherals 

must include a good quality keyboard for inputting the text, and 

a good quality output device such as a daisy-wheel, or similar 

quality of printer (see page 45). The printer is the part that costs 

money, especially if you want attractively laid-out copy with a 

good quality typescript. 

Stock control Many small companies keep track of their stock with a micro¬ 

computer. A computerised stock control system is usually com¬ 

bined with order entry and order invoicing. One aim is to 

minimise the errors in copying the invoice to the stock record. 

Stock balances tend to be more accurate if invoices are produced 

immediately after goods are issued. Information about orders can 

be made available quickly and, when required, the system should 

be able to produce predictions about the chances of running out 

of stock based on its past experience. 

Stock control is one of the most important functions of a 

computer in small, and large, businesses. The information base 

built up allows not only the prediction of feasible future events, 

but also 'modelling' of the business for forecasting and future 

planning. When linked in with payroll accounting, sales and 

purchase ledger, a powerful system can be developed for the 

efficient and profitable running of the business. 

Distribution A number of companies are now using microcomputers to organ¬ 

ise the most efficient methods for distributing products around 

the country. The programs include road network analysis to 

calculate the quickest route around the distribution network, as 

well as warehouse and depot locations. Coupled with account 

'clustering', these programs can be integrated into a total plan¬ 

ning system. 

Computers in the warehouse 

of a small company. 

They provide for the easy 

processing of orders and invoices 

and an accurate record of all the 

stock in hand at any one time. 
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Groups of independent lorry drivers have come together to or¬ 

ganise one computer-based information system. A central office 

connects with computers at various points around the country 

and customers with loads to be carried can telephone in locally 

with their requirements. The local computers display the in¬ 

formation relevant to that area and plan the drivers' routes 

accordingly. Information on the cheapest fuel distributors on the 

chosen route is also available. Wherever the driver is, he can find 

out what work is available locally and, together with the other 

information, he can make the most efficient use of his vehicle. 

Controlling things The application of computers to control things is one of the most 

interesting and developing areas for using the microcomputer. A 

modest system could be used as an aid to piano tuning, to monitor 

and control an experiment in a laboratory or to control the 

sluices, water levels and gates in a canal lock. Model railway 

buffs are beginning to use microcomputers to control trains and 

track layouts. One simple circuit will control 16 trains and 128 

sets of points, for example. The potential list is endless. The main 

challenges, though, are not usually with the computer itself or 

even with the programs needed to get it to do the job - they are 

the problems associated with getting meaningful information into 

and out of the computer from the real world. 

Opening up a new possibility. 

The automatic operation of canal 

locks is technically perfectly feasible. 

Whether or not the capital investment 

would make it worthwhile and 

whether as a result most of the fun 

would be taken out of a canal 

holiday remains to be seen. 

Take an imaginary (but perfectly possible) canal lock control 

program, for example. This could contain some fairly simple 
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reflection in BASIC of obvious instructions such as 'if the lock 

is full open the upstream gates and close the upper sluices'. 

If you have understood the basic principles of problem solving 

and programming you should now see how this kind of program 

could be tackled. 

The challenge comes when we try to measure whether the 

lock is full or not and to get a lock gate to open. This involves 

sensing devices and activators which need to trigger or be 

triggered by the computer. In fact the lock gates problem is not 

too difficult: a float could operate a switch when the lock is full 

and a motor could open the gates. A switch is either open or closed 

and a motor is either switched on or off, so here it is relatively 

easy to get the computer, which deals in Is and Os (on and off) 

to communicate with either of them through some simple cir¬ 

cuitry. This would, for example, use the low voltage signals of 

the computer to control the more powerful supply needed for the 

motor for the lock gates and sluices. These, in their turn, would 

need other sensors to tell the computer when they were fully 

open so that it could switch the motors off. 

The electronic On page 70 we described the simple way in which an electronic 

piano tuner piano tuner could do the job. In terms of the basic ideas it's easy 

enough to understand but it's not so easy in practice. Again, the 

problems arise when we get the sound from the piano and con¬ 

vert it into a form the computer can cope with. A microphone 

could pick up the sound, producing electrical signals which 

would need converting from their analogue (continuously vary¬ 

ing) form into a digital representation. An 'analogue to digital 

converter' would be needed between the microphone and the 

computer. The computer could 'sample' the waveform of the 

incoming sound and compare the frequency with a figure held in 

its memory. The results - too high, too low or the same - would 

determine how an output device behaved. This could be a screen 

which says whether the frequency is right or not and would be 

the simplest kind of output. The human piano tuner could then 

tighten or loosen the string accordingly until the frequency was 

exact. More ambitious ideas for an output device which involves 

a special kind of motor turning the tuning pegs are easy to des¬ 

cribe but are more difficult to realise. An enormous 'twist' would 

be needed to overcome the friction holding the peg in its hole. 

However, it is a possibility. 

Future years will see more and more ingenious control appli¬ 

cations as the microcomputer becomes surrounded by a variety 

of reliable peripherals suitable for linking it with the real world. 
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Computers for 

the disabled 

Computers for the disabled 

'Mavis'. Using a foot operated 

joystick-type of control, this severely 

disabled boy can move the cursor 

along the alphabet displayed at the 

bottom of the screen and choose his 

letter for a hangman game. 

Small computer systems are changing not only the way disabled 

people look at the world, but also how the world looks at the 

disabled. Advances in speech recognition are beginning to do 

away with the need for a keyboard. The ability to use highly 

complicated equipment with little movement by the operator has 

opened up completely new areas of work. 

For example, it is possible for a severely disabled and dumb 

person to control a machine, which makes audible sounds, with 

just a toe. The control mechanism - which looks like a stick - has 

80 different positions. Some represent words and numbers. Most 

are sounds and parts of words, and by moving the stick to dif¬ 

ferent positions, the user can construct sentences which the 

computer then 'speaks'. 

Right: 

'Splink' which enables a person with 

a speech disability to create words 

and sentences on the screen using a 

touch-sensitive keyboard. The 

keyboard contains some common 

complete words (with black 

borders) but mainly separate 

syllables, used as building blocks. 

If more movement of the body is possible, there is another 

computer-related development. This system consists of a small 

wordboard with around 950 commonly used words in alpha¬ 

betical order. The user depresses the appropriate words on the 

keyboard, which is usually on the lap, and builds them into sen¬ 

tences which appear on an associated screen. An infra-red link 

between the wordboard and the processor gets rid of loose, 

trailing wires. There are individual letters on the wordboard 

which allow individual words to be constructed, as well as 

the key-codes which allow whole phrases to be used by only 

touching one key. 
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Finally, a couple of unusual examples. 

Bee keeping 

» 
4 & t 

Newsagents 

Choosing a system 

In the West of Ireland a commercial apiary uses a small computer 

system to keep track of its bees. The program ensures that a master 

record is kept on each hive and its environment. This includes 

information such as the height of the hive above ground, the 

make of hive, the material from which it's constructed, the nature 

of the surrounding countryside and so on. As all these factors 

affect the welfare of the bees and consequently their honey, a 

careful record is required. Up to 100 variables can be fed into the 

system. The input can be amended to account for such major 

changes as change of Queen, diet or location and the records can 

be updated for production changes and other brood data. A 

print-out from the computer provides a daily work schedule 

showing which hives are to be inspected, their diet, and other 

points to be checked. Incidentally, all input and output is in 

Gaelic! 

Still on the subject of bees, a school science laboratory in the 

Midlands is aiming to use a microcomputer linked to an electronic 

weighing device to weigh a hive every few seconds and keep 

track of the results. In this way the pupils will be able to study 

the comings and goings of the bees to see if there is any pattern to 

their activity. 

A number of newsagents are now using computers to schedule 

the delivery boys' rounds. One company in the West country has 

3,500 customers, and each morning and evening the paperboys 

receive printed delivery lists. Each list is personalised and takes 

account of the day of the week and the papers ordered. The main 

benefits of the system include increased accuracy, reduced 

clerical work and wastage of papers and a reduction in the num¬ 

ber of outstanding paper bills. The customers get their papers 

earlier and the newsagent has a little longer in bed each morning! 

It is very difficult to give advice which will satisfy every prospec¬ 

tive buyer of a microcomputer system. All the examples above 

use different systems with different peripherals and different 

software programs. 

The very cheapest microcomputers on the market are ideal if 

you simply want to find out a little about computing - but they 

have their limitations. If you have a serious application in mind 

or you feel that you might develop a long term interest, it's prob¬ 

ably best to buy a system which is capable of expansion and 
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which has a good, robust keyboard. However, to make a sensible 

choice the best thing to do is to take advice. 

Advice Reading the computer press is a good idea. There are now a 

number of magazines on the market catering for the personal 

computer owner which will give some idea of the range of equip¬ 

ment available. However, the first time buyer may well be 

baffled by the hyperbole of the advertisements and the technical 

language used in the articles reviewing equipment. 

High-street computer shops exist, though many of them are 

agents for particular makes of computer and therefore may not 

be impartial in their advice. Nonetheless, they should be able to 

demonstrate equipment and be able to discuss the availability of 

software with you. The problem for many first time buyers is 

that it is not easy to know what questions to ask and it is easy to 

be impressed by demonstrations. But don't be afraid to say if you 

don't understand the technical sales talk. A well established local 

shop with a good reputation and knowledgeable staff may be a 

very good place to 'get your eye in'. Micro systems centres and 

other small advice centres - some run by public bodies like the 

National Computer Centre - are springing up, able to give im¬ 

partial professional advice to, for example, the small business 

man. Computer clubs exist and again, although individuals in 

them are usually enthusiasts and very evangelical about com¬ 

puting and about the equipment they themselves have bought, 

they can be helpful sources of advice. Ideally, advice can best 

The Birmingham Micro Centre - one 

of an increasing number of places 

where prospective buyers can try 

out standard business and 

educational packages. 
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Some questions to ask : 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

come from people who have bought equipment for a particular 

purpose similar to the one you may have in mind. One final source 

of advice could be a local school or college which has a computer 

studies department. 

Is the system easy to use - as far as you can see? Does the manu¬ 

facturer have a good reputation? 

Is the manual comprehensible, with a good index? 

Can it be used at home on trial, without obligation to buy? 

Is there a local source of advice about how to use the system if 

you get into difficulty? What about servicing arrangements? 

Is the system well supported with applications programs? 

Does it have a reasonable amount of random-access memory? 

Up to 4K will not support a long program; 16K will support a 

substantial applications program, but more will be needed if a 

lot of text data is to be stored. Can additional memory be plugged 

neatly in to the machine or does it require an expansion box? 

Does the machine support low, medium and/or high resolution 

graphics, sound, colour? 

b c 

Low, medium and high resolution graphics. 

a) 'Chunky' graphics, made up of fairly large square 'picture cells'. 

For the computer's memory to 'map' all the pattern on the screen it 

needs'IK'of space. 

b) The same pattern in a higher resolution, this time needing '10K' 

of space. The picture cells are much smaller. 

c) High resolution, using '20K' of memory space. 

Will the machine link easily to a range of peripherals like printers, 

a disc system or viewdata ? 

Will the machine accept plug-in ROM chips for specific applica¬ 

tions programs or extra languages? 

Is the system capable of linking with other computers or with a 

second microprocessor for future expansion? 



Earning money 

Above all, the question to ask yourself is - what do you want to 

do with the computer? 

One way of beginning might be to buy a cheap system and 

then, having exhausted its possibilities, sell it and buy something 

better. Alternatively you may find you have exhausted your own 

interest, in which case you won't have wasted much money. 

Another aspect to consider is that computing can become 

addictive, as many a spouse has discovered as his or her partner 

clacks away on the keyboard, deep into the night. 

Some computer users consider the possibility of earning some 

money the most important reason for buying a system. There is a 

lack of really good software at the moment, and this is the first 

area to consider if you have a 'forte' for programming. If you're 

good at it then the purchase of a well known and popular system 

could be the key to a prosperous future! Some people are now 

making a living writing software for the major software distribu¬ 

tors. As these companies usually work on a straight royalty basis, 

10% on a £10 program works out at a reasonable amount even if 

only 10 a week are sold! 

Many local retailers, unfortunately, do not have the software 

expertise they need. Tailoring, or altering existing programs so 

that they meet a specific, slightly different need, is a starting 

point. If you are an accountant, for example, with programming 

ability then your local retailer will probably welcome you with 

open arms. 

You could advertise. The computer magazines usually have 

cheap advertising space for the one man band. You could even 

contact your local computer clubs, since people with software 

problems will contact them for help. 

As more and more educational institutions now have com¬ 

puters, it is becoming easier to get a background in computer 

programming. Similarly, the engineering industry is becoming 

more and more computer orientated, and anybody with a talent 

for electronics or programming (not necessarily mathematicians, 

either) should consider a career in one or more areas of computing 

- as a country we only produce about half the graduates industry 

needs in digital electronics. 
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What the 
computer 
can't (yet) do 

The limits 
to growth 
By now we should be far enough up the hillside of knowledge to 

be able to turn round and take a broad view over the landscape, in 

order to see what computers can, and what they can't do. What 

do we want them to do? Well, the human race being the lazy 

object it is perhaps would like computers to do all the tiring and 

monotonous things of life, while we do the amusing, interesting 

and creative ones! 
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Guess what this is. There are about 

100 'bits' of information in the picture. 

Teaching the 
computer English 

The same 'picture' but with 400 'bits'. 

Making a living in the modern industrialised state tends to 

mean that you sit at a desk or a cash register, stand at a lathe, sit 

in the cockpit of an aircraf t or at the wheel of a car. You are asked, 

first of all, to understand what is put before you. That involves, 

firstly, either seeing or hearing. This bit of paper is an invoice for 

£342.96. Over there is a road sign saying 'Ml and the North'. 

The altimeter reads 15,000 feet and air traffic control is telling me 

to climb to level 27. The phone rings and a voice says, 'Please 

bring the Mutronics file to the Boardroom'. A trolley is wheeled 

up, full of engineering parts - you have to drill 43 rivet holes, 

one-eighth of an inch diameter, in specified positions. And so on. 

It is just at this basic stage that at present the computer fails 

us. We can't yet make it see as we see, or hear as we hear. The 

computer may be stupid, but it is not lazy. We can tell it to 

reconcile all our accounts, in one snap of the central processor. 

But we are not doing nearly so well in teaching it to see, to hear, 

or even to speak. To understand why, we have to take a look at 

the information we process when we carry out what to us are 

these simple activities. 

The 26 letters of the alphabet combine to make some 15 million 

permissible English words, let alone those in French, Spanish, 

German and Yashmak. Simply to test a word to see if it is a proper 

English word means looking for it in this 15 million word 

dictionary. 

The computer can do this, but so far we have concentrated 

on teaching it to do it the logical way - the sort of way we used 

to find Mr Brznski in the telephone book on page 32. In other 

words, we tell it to test the first letter of the suspect word against 

the first letter of the first word in the dictionary. If it matches, to 

test the second, if it fails, to test the first letter against the first 

letter of the second word. And so on, and so on. The amount of 

computing goes up in proportion to the number of possible words 

in the language. 

Even at the speeds at which the central processor works, that 

means it is an incredible task even to check one single word. (In 

practice, programs that check spellings use a much more restric¬ 

ted dictionary.) However, this is only the first part of the problem 

for as soon as we combine these words into sentences we create 

a vast new family of symbols - that is, complete sentences. For 

instance: Til meet you in the other place' and 'I'll meet you in 

the other plaice' are two different sentences. Only one letter has 
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With 1,600 'bits' - the picture is 

now recognisably a face. But whose? 

. . . and to 
listen to us 

With 6,400 'bits'. 

been altered from the first to the second, but that single letter 

completely changes the meaning - or rather, reduces the sen¬ 

tence to gibberish. How do we explain to the computer why the 

second sentence is gibberish? 'Plaice' is a noun, after all, just 

like 'place'. 

Of course, we could tell the computer to check sentences the 

logical way, too - by putting into its 'dictionary' every con¬ 

ceivable meaningful sentence, and telling it to check 'I'll meet 

you in the other plaice' to see if it is one of them. The volume of 

sentences we'd have to include is vast. For instance, if we reckon 

that the ordinary person uses about 10,000 words in sentences 

less than 30 words long, we would have to include some 10,0003° 

sentences (that's a 10 with 120 0s after it). Discs hold a lot of 

information, true, but that volume of text would fill 10115 (10 

with 113 0s) discs! 

Clearly, logical methods aren't going to get us far. We must 

take a lateral short cut and though computer people have some 

ideas in this direction, they haven't solved that problem yet. 

The problem becomes even greater when we expect the computer 

not to read, but to listen to us. Before it can even start on this 

mammoth task of working out whether what we are saying makes 

sense (and we haven't even thought yet about how it might work 

out just what that sense means), it has to work out just what on 

earth it was we said. 

We all tend to speak sloppily and our language, too, is easily 

misunderstood. There are plenty of words which sound the same, 

sometimes are even spelt the same, but have different meanings. 

We usually have no trouble ourselves in working out which 

word, or which meaning, is being used in a particular sentence. 

The construction and meaning of the sentence give us plenty of 

clues to go by. Indeed, we make so much use of the clues that if 

the person talking to us makes a verbal slip we often don't even 

notice - we 'hear' what we were expecting to hear. The computer 

doesn't have that advantage, though. It is not made that way. 

Let's take another example. In order to conserve 'band¬ 

width', the telephone system cuts out the high frequencies - 

above 3,000 vibrations per second - in peoples' voices. As a result 

the sounds that come down the wire for, say, 'seven' and 'heaven' 

are actually identical. Yet we, listening at the other end, are very 

seldom confused. We have been cued beforehand that the 

speaker is going to refer to numbers or to theological concepts, 
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The 'paperless' electronic office may 

be just round the corner (this one 

uses a British computer system), but 

we are still a long way from the 

time when speech can be recognised 

reliably by the ordinary computer. 

Big mind — 
little computer 

and our mental interpreter is ready and waiting at the appropri¬ 

ate spot in our vast mental store to compare what comes in with a 

range of appropriate possibilities. 

Lateral thinking aside, it is still true that our brains are a lot more 

powerful than a computer when it comes to finding and com¬ 

paring information in this way. Inside our heads we have room 

for so many bits of information that, using the most advanced and 

compact technology available today, storing that volume of in¬ 

formation would take a computer the size of the Albert Hall. 

Having stored it, what could the computer do with it? Certainly 

the human ability to jump around in this huge store of informa¬ 

tion, using very feeble clues, is something the computer can't yet 

begin to touch. When you see a face in the crowd and recognise a 

childhood friend of 30 years ago, and deduce from his appearance 

quite a lot about his life since you last saw him, that is something 

computers cannot start to imitate. Well, it's not so much that 

computers can't think of doing it - it's that we can't begin to 

think how to make them do it. As we said in Chapter 2, computers 

don't solve problems for us, they just carry out our solutions. 

And getting the computer to understand the language we write 

and speak is a problem we haven't yet solved. 
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Teaching the 
computer to see 

Another problem we haven't yet solved is that of teaching the 

computer to understand what it sees, in the sort of way that we 

do. Getting the computer to see creates no problem - a video 

camera can simply be connected to one of its input ports. How¬ 

ever getting it to make sense of what it sees is more difficult. 

a 

Left with 25,600 'bits'. Some people 

can recognise the face by now. Try it 

with your friends: would it help 

them to know that it was a film star? 

b 
With 102,400 'bits'. 

C 
With 409,600 'bits'. It's Cary Grant 

- but could the computer recognise 

him? How could we begin to 

explain to it how to recognise an 

individual? 

Let us just consider the problem of recognising Cary Grant, let 

alone reproducing the way he walks and talks. Suppose that you 

can recognise him from, say, 10,000 other people you might see 

on your television screen, and that you can do this when his 

image occupies a quarter of the screen for five seconds. Now, a 

television picture consists of six hundred lines with about 600 

coloured dots on each line - 360,000 dots altogether. Each dot 

can be one of three colours, and can have several different 

brightnesses. It turns out that it takes about six million bits, or 

nearly a million bytes, to hold the information contained in a 

complete television frame. Frames are repeated 25 times a second, 

so the information we need to identify Cary Grant is contained in 

250,000 x 5 x 25 = 31 million bytes and all this before we have 

worked out a way for the computer to begin to do the same thing. 

It would still have to pick out Cary Grant from the other 9,999 

people the picture might show. If we were to store the informa¬ 

tion needed to do this on hard disc, it would take an hour a head 

just to read the data that defines our image of Cary Grant. And 

then, how would the computer know how the essence of Cary 

Grant is hidden in those 31 million bytes that identify him to us? 
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These figures are very rough, but they help to illustrate what 

cannot be done with today's hardware and software. 

First steps Daunting though the task is, the business of sound and vision 

input and output for computers is a major area for research in 

computer applications today. Let's take a brief look at some of 

the ways in which the research has met with success. 

We have already seen how the computer can handle words, 

even if it does not understand what they mean. It can check their 

spelling, too, against a list of words it has been given. Though the 

number of words in the English language is so massive, most of 

us use only a small proportion of them. The computer can work 

with a 'dictionary' containing a few thousand words, including 

the sort of common words that appear in this chapter, and a 

special selection of technical words used in the area in which it is 

being applied, say, medical terms in a medical secretary's spelling 

program. It can also be fed a list of proper nouns that will fre¬ 

quently come up - the names of clients, towns in the area in which 

the firm using the program operates and so on. If a word in the 

text being checked does not appear in the dictionary, the pro¬ 

gram will alert the operator, and he or she will then need to check 

to see if it is a perfectly valid word that has not been included in 

the dictionary, or if it is actually a misspelling. 

In the chapter on programming we saw how the computer 

uses certain words as commands; it understands these words and 

acts on what they tell it to do. The number of commands the 

computer will recognise is much smaller than the number of 

words in our dictionaries above, and this type of small selection 

of words has proved a good place to start teaching the computer 

to understand the spoken word. 

Computers have begun to learn to 'hear' by repeatedly 

analysing the voice of one speaker, speaking a small selection of 

command words. The sound is first converted to electrical signals 

by a microphone. Then these analogue signals are converted into 

the binary pattern which the computer can recognise. After a 

number of repetitions they can distinguish the binary representa¬ 

tion of, say, 'RUN', from the binary representation of 'LIST', or 

some other word in their vocabulary - and then act on the com¬ 

mand in the same way as if it had been entered into the computer 

through a keyboard. 

We saw earlier how this type of development is proving 

particularly useful for the handicapped. Steady improvements 
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A visual representation of the 

soundwaves for the words 'LIST' (left 

above), and 'RUN' (right below), as 

seen on an oscilloscope screen. 

The patterns are clearly different 

and can easily be 'digitised'. 

If this kind of information is entered 

into the computer it will need to be 

able to match the received pattern 

with one of a number of patterns 

stored in its memory if it is to 

recognise a word. 

have meant that the more advanced machines can now under¬ 

stand virtually any speaker and that their vocabularies are 

expanding slowly. 

Teaching the computer to speak is not nearly so difficult. It 

can say virtually anything if its memory contains a suitable 

digital representation of what it is to say, and if it has a suitable 

output through which to say it. Some systems concentrate on 

teaching the computer the sounds of various syllables, which it 

then combines into words (sometimes rather odd Dalek-sounding 

words, admittedly); some teach it the entire word, or link it to a 

recording of a human being saying the word. 

The first speaking word processors, which tell the typist 

what he or she has typed in (particularly useful for blind typists), 

and the first 'spelling test' machines, which say a word and then 

ask a child to enter its spelling, are already available. 

Though the computer can't recognise Cary Grant yet, it is 

having a little success in recognising more simple patterns or 

objects. The first areas in which this type of vision recognition 

are being tried include the use of'intelligent' machines, or robots, 

to sort simple parts. The computer has to learn to distinguish, say, 

a half inch rivet from a quarter inch bolt, whatever angle its 

input camera views them at. Even that is not easy, but it has 

taken some tentative steps in the right direction. 

In yet other applications, we have found a more lateral way 

of thinking around the problem of the computer's limitations. 

Take that bar coding example we discussed in Chapter 1, for 

instance. The computer is doing much the same job as a shop 

assistant who picks up a tin of beans and thinks, 'Ah, yes, beans 
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went up lp this week'. Instead of recognising the picture of 

beans on the tin, though, the computer recognises the bar code, 

a convenient form of binary information which tells it that the 

tin contains beans, just as the picture on the tin tells the human 

assistant the same thing. 

Practical 
problems 

The computer is not quite as clever as all that! However, there 

are still plenty of jobs which don't demand these recognition 

skills, which we might think the computer would be extremely 

good at but for which it isn't yet being used. 

Sometimes that's because we haven't yet got around to using 

the computer, but often it is because practical problems, quite 

unconnected with the business of getting the computer to process 

the information, step in to make using the computer impractic¬ 

able. Let's look at some of these reasons why the microcomputer 

hasn't yet taken over from us. 

Taking over drudgery - 

a termite in the works 

Robots in Industry 

Teaching a robot how to spray 

vitreous enamel on to cooker 

liners. Once the man has gone 

through the motions the robot 

can repeat them because it will 

have mapped the movements in 
its memory. 

We need to go back to when we first talked about what the 

microcomputer could do, in Chapter 1. We said that the com¬ 

puter's real forte was in taking over drudgery: doing boring, 

routine jobs that human beings don't enjoy and are not par¬ 

ticularly good at. And that's true. But in fact, lots of jobs which 

we think of as routine are not really that straightforward after all. 

For instance, a legal publishing firm got itself computerised. 

Part of its business was in sending heavy legal tomes to sub¬ 

scribing solicitors informing them of changes in the law. Part of 

the computer's job was to make up a delivery note for each 

lawyer, print an address label, and calculate the postage. All very 

fine and large, except for one particular subscriber who lived 

several hundred miles up the river Volta in central Africa. His 

books had to wait up to a fortnight in a riverside trading post for 

a boat going up-river. While they were there, they were subject 

to the attentions of some law-loving termites. 

Dear old Winnie, or whoever had been in the Post Room 

before the computer, knew that this particular consignment had 

to be wrapped in lead foil if it were to arrive uneaten. The postage 

had to be increased by an appropriate amount. This had always 

been done - until the computer came, and the customer got 

several boxes of dust at £200 a time. 

You might think that an office cleaner's job, say, was an 

example of pure drudgery. But, in fact, it requires very complex 

skills in recognising what is rubbish and what isn't. The human 
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Robots in Industry 

Top - Most robots are used for 

predictable, well-def ined jobs in 

unpleasant conditions. 

Below - Visual recognition robots 

are still at a relatively primitive 

stage of development. This is a 

laboratory scale machine designed 

to recognise the shape of a 

particular metal part and pick it 

up, no matter what position it is 

in. Parts are fed down the chute 

(left), on to an illuminated table. 

A camera, (top), looks at the part 

and feeds information into the 

computer, which recognises its 

shape and position and turns the 

table round so that an arm can 

come down and pick the piece up. 
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cleaner might see, say, a pocket calculator in the waste bin, fish it 

out, check to make sure it still works, and put it carefully back 

on the desk. The robot would scoop it up without a second 

thought, and woe betide its owner on Monday morning! 

On the other hand, no-one has the mental energy to do a job 

that has no drudgery in it at all. When computer-aided design 

was first introduced to the aircraft industry a few years ago, the 

first — unlooked for - result was a strike among draftsmen at a 

British design consultancy who were using the equipment to 

design a new wing for some American military transport air¬ 

craft. Their complaint was just this: in the past they would be 

set a problem - design the outer aileron, say. They would sit 

down, have a think, wander round the office, chat to their friends, 

doodle upside down on the corners of their drawing boards, do a 

few sums in the train, have another think, and in three months 

feel their way to a good design out of all the millions of no-good 

possibilities. The computer put a stop to this pleasant process. 

As soon as they sketched in a possible solution, it would straighten 

up all the lines, dash in rows of rivets, go off to the master data¬ 

base, look up the loads this bit was supposed to bear and how 

heavy it could be, do the stress analysis in a few milliseconds and 

come back with the terse decision, 'No good. Try again.' The 

miserable designer's brain wasn't proposing to produce another 

drop of nectar for three months - the last one was only five hours 

ago! So the designers went on strike. They couldn't stand not 

having the spells of drudgery - what might be considered 

'reflection time' in between bouts of creativity. 

Fitting the 
computer in 

Offices and factories are complex organisms, with many different 

processes and procedures. Perhaps the computer could, in theory, 

take over the whole operation; it is a very different matter to get 

the computer to take over a small part of the operation and to fit 

its procedures in with the procedures of the human beings it has 

to work with. 

The present generation of office computers do not blend well 

with traditional paper procedures. Data has to be copied from 

invoices and typed into the electronic stock control and account¬ 

ing programs; it has to be copied back again into letters of 

apology to creditors, and letters of menace to debtors. 

To make ultimate sense of the technology, letters and docu¬ 

ments of all sorts that come into a firm ought to be held on 

electronic file, in a form the computer can make immediate use 
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The 'paper-driven' office is friendly, 

comprehendable and in some ways 

inefficient. But most of this 

information is on scraps of paper 

which come from a large number of 

different sources. Could it ever be 

held in a computer's data bank? Is 

the paperless office (see here - 

below - at Citibank New York) really 

going to take its place overnight ? 

Information here is stored and 

retrieved electronically, but it is 

only certain kinds of information 

that can easily be transmitted in this 

way - mainly that generated within 

the organisation and within the 

system. Unless all offices have 

compatible systems, the piece of 

paper, read by the human eye, will 

still keep its importance because of 

its flexibility. 

of. At present they can't be, unless they are copy typed onto the 

machine, which is ridiculous. There is equipment which is able 

to read text into the computer, but it isn't yet available at under 

£50,000. 
When a customer writes and says 'Please send me three dozen 

of your "Honolulu" style shorts and your Winter Catalogue when 

it's ready' the system ought automatically to raise a delivery note, 

an invoice, adjust the books - and, in six months time, send off a 

catalogue. Sadly, most software falls short of this and a clerk is 

still needed to finish off what the computer can't manage. 

In factories there are similar limitations. In those designed to 

make things by traditional methods the advent of the computer 

has produced only little change - a computer-controlled machine 

here and there - maybe the occasional robot doing a nasty job, 

but no systematic exploitation of the possibilities. Yet in some 

places in the world - especially Japan - there are automatic fac¬ 

tories (there was one in Britain until the recession forced it to 

close down). Goods come in, are handled, machined and assem¬ 

bled by flexible machines, each controlled by its local computer 

and linked to its fellow machines and to a central computer. Often 

the products have been re-designed in such a way that the new 

technology can handle them more easily. 

In such factories the incoming orders, the checking of the 

progress of the manufacture of each item, the warehousing and 

the dispatch of the goods and of the attendant paperwork is 

integrated by a network of computers. Such factories are able to 

respond to the need for new products because the equipment is 

'under software control'. A new product, designed with 

computer-aided design equipment linked directly with the 

computer-aided manufacturing process, can be 'fitted in' with 

ease. The use of such techniques by some forward-looking com¬ 

panies gives them many advantages over their competitors: they 

can respond to orders more quickly; products which don't sell 

can be removed and replaced without having to abandon 

'dedicated' production lines; quality is on the whole higher and 

the labour content is lower, making the product cheaper. 

The brewing industry is one of the best existing examples of 

automation in Britain, largely because breweries were being re¬ 

designed and rebuilt to mass-produce beer about 10 years ago. 

They are therefore laid out for automation. In a brewery, large 

tanks of liquids are mixed, heated, refrigerated and generally 

pumped about to produce the foaming delights of the saloon bar. 

Essentially, the machines only have to sense the levels and tem¬ 

peratures of liquid in various tanks. They have to open valves. 
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Flexible manufacturing 

Below left: Computer-aided design 

of the parts required to press out 

vehicle body panels. 

Below right: A computer-controlled 

template cutting machine. 

Bottom: Robots working co¬ 

operatively, welding a truck. 

Automated production undoubtedly 

leads to increased productivity but it 

also requires new skills, with the 

loss of many traditional semi-skilled 

craft jobs. 



and turn pumps on and off. The problems are basically simple. 

So, in some breweries, all the master brewer has to do is to go 

into work, and type on the keyboard of his microcomputer: 

MAKE 10000 GALLONS OF OLD CATASTROPHE 

In less well organised industries, the small computer has made 

much less headway. 

The point is that unless the whole thing is thought through, 

the use of computers in industry - as in the office - is bound to 

be piecemeal and messy. We are, with the exception of those few 

(largely foreign) factories, or those very few completely elec¬ 

tronic office systems, still in the early days of the new technology. 

And when it comes, there is a price to pay, of course - many 

skilled and semi-skilled craftsmen and clerks in these highly 

automated industries have lost their jobs. The jobs which remain 

are the highly skilled ones, those involving judgment or human 

contact (the designers, the technicians, the salesmen), the un¬ 

skilled ones (the floor sweepers) and those doing jobs which are 

still too difficult or too expensive to mimic with a robot (crane 

drivers, for instance). 

Linking 
computers 
together 

We have already looked briefly (on page 28) at the way in which 

computers first stopped being isolated machines, locked away 

in their air-conditioned temples, being ministered to by the data 

processing high priests and launched out to join their users in the 

world outside. 

Many of the timesharing systems which developed from 

early mainframe computing depended upon the use of several 

terminals linked to one central computer. A terminal is very 

much like the video display/keyboard unit that acts as an 

input/output medium for many microcomputers: it is a machine 

which provides input and output devices, and may contain a 

microprocessor to give it some 'intelligence', but which is depen¬ 

dent upon a larger processor for its computing power. The great 

advantage is that the terminal can be located wherever its user 

needs to be, while the main computer might be miles away from 

it. Many terminals today are portable, too. 

What connects the terminal to the computer, then? It 

generally uses either the telephone system, or a private line 

which works in much the same way. The private line is more 

reliable in operation, but the telephone system is more flexible: 
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you can phone many computers from any convenient phone, 

link the terminal to the phone handset with a device called an 

acoustic coupler, and - if you know the machine's passwords - 

compute away. 

The public 
computer 

Not content with merely providing the lines through which com¬ 

puters and terminals can talk to each other, British Telecom has 

now gone one better and provided a computer which we can talk 

to. That's what Prestel is - a large central computer with a large 

amount of memory space, which British Telecom 'leases' out to 

private information providers. Any of us with a Prestel terminal, 

or a microcomputer with a Prestel adaptor, can dial the central 

computer and obtain the information stored on it. 

Computers used as stores for information in this way are 

known as databanks, and this type of system, which uses the 

telephone network as a framework for providing databank in¬ 

formation, is known as viewdata. A similar system, 'teletext', 

depends upon broadcast information, which is received on 

adapted television sets: Ceefax and Oracle are the British exam¬ 

ples. These systems were developed in Britain and are being 

exploited all over the developed world. 

Prestel, British Telecom's huge 

but as yet underused data bank. 

Is this the way we'll get more factual 

information in future or will we 

prefer traditional methods for 

shopping around? 

P E TEL 65097* Op 
OFFICE ACCOIHIOOftT I ON - North Strickley 

BRIPIOALE ROAD 
Floor arts: 1050 sq metres.1st floor 

sub-divided into 4 suites 

Suits size: A.414 m2 C.115 m2 
•328 m2 0.193 m2 

Location: Sited between a 2-storey 
Office block 6 supermarket 
in the centre of rapidly 
growing north area of town. 
Overlooks the High Street. 

contact Cubham E Creui 
__ 24, Col ten Lane. 0123 4567S 

pras* 1 for other offices by sixe 
2 offices in other areas 
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Needless to say, the Prestel computer is just the same as all the 

other computers we have talked about, and it has to be program¬ 

med in the same sort of way to enable us to find our way around 

its stores of information. This is done using a kind of 'menu- 

driven' approach. (A menu-driven program is one which pres¬ 

ents you with choices on the screen. Pushing the appropriate but¬ 

ton then leads to further choices, progressively narrowing down 

the search until you find the information you're looking for.) 

Microcomputers 
and viewdata 

Microcomputers have the capability to retrieve and display in¬ 

formation stored in these public databanks. Some have a teletext 

or viewdata card that plugs into one of the input/output ports. 

Microcomputers designed in Europe are now being designed 

from the start to be able to link with Prestel or teletext. 

One problem in Britain is the need to get British Telecom 

approval before any device can be plugged into the telephone 

system and this limits the use of Prestel at the moment. However, 

some systems are designed around teletext modules, i.e. devices 

for receiving the broadcast information from the BBC or ITV and 

come in either kit or ready built form. To appreciate and use 

teletext or viewdata to the full, however, colour must be avail¬ 

able, and this rules out many American or Japanese systems at 

the moment. 

One of the more exciting developments is in the area of 

'telesoftware', whereby the computer can receive programs via 

teletext or viewdata. The appropriate page can be dialled up, and 

then the program can be loaded directly into the computer. 

Microcomputer 
networks 

As well as using these databank facilities, many microcomputer 

users will be interested in communicating with other users: 

people with technical, business or hobby interests in common, 

for instance. The same kinds of system can be adapted to serve 

this purpose. 

In America, private organisations are already offering data 

network facilities. Anybody with the appropriate equipment 

that allows the computer to link into the phone system - an 

acoustic coupler or a permanent connection of some kind - can 

join the network by enrolling once a year, and then pay a fee - 

around £1 an hour - to use the network. You can communicate 

with other microcomputer users, interrogate a central database, 
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or even gain access to programs held centrally. Most of the 

popular computer systems are catered for. The quarterly tele¬ 

phone bill is usually the most expensive item! 

Cutting out the cost of phone calls means investing in private 

lines, a desirable alternative if you plan to communicate regu¬ 

larly with a small number of other local machines. There are now 

a number of these 'networks', one of the best known being the 

'Cambridge Ring'. This was developed by Cambridge University, 

to allow all their computers scattered around the town to talk to 

one another. The reason for this was simple. One computer may 

have some information that another one would find useful. 

Instead of duplicating the programming, or even shipping data 

around on vulnerable disc or tape, it was easier to link them all 

together with a few wires. The Cambridge Ring was originally 

designed for minicomputers and mainframes, although micro¬ 

computers can now link in with it. 

Recent developments have produced cheap 'ring' circuitry 

that costs around £50 per computer. Although it's only available 

on one or two microcomputers at the moment, it is designed to be 

flexible enough so that eventually many different makes can be 

interconnected. Up to 255 individual computers can be linked 

together, and even share the same expensive disc drives and 

A Japanese 'network' of computer 

terminals for the small shopkeeper. 

A central computer takes in 

yesterday's electronically recorded 

sales details from each shop and 

automatically organises the 

deliveries of new stock and does 

the bookkeeping. But is it 

sapping initiative? 
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Computer 

networks 

in buiness 

The age of instant banking may be 

approaching. Computer networks 

within and between the banks could 

easily be expanded to reach the 

counter clerk and to the customer 

himself. Here the customer 

completes a transaction in under a 

minute by entering details on a 

simple keyboard, doing away with 

the need to write a cheque. The same 

system can even be extended into 

shops so that customers can pay 

their bills by debiting their bank 

accounts on the spot. 

printers. This exciting development will probably lead to many 

groups of people in a locality or a building connecting their com¬ 

puters together and creating local networks. Schools are a prime 

example. 

The network idea is particularly useful in business, and on a 

large scale it is helping to provide the basis of a totally automated 

information handling system. How would it work? 

Take, for example, the office of a small magazine. It has the 

following staff: an editor, a production sub-editor, two reporters, 

an editorial secretary, an advertising manager, two salesmen and 

an advertising secretary. They could all have microcomputers on 

their desks, consisting of a screen, a keyboard and a processor 

and memory linked to a central hard disc and a high-speed 

printer. The editorial and advertising departments work mostly 

apart, but occasionally have to collaborate. Consider the editorial 

department first. 

183 



184 



Are the Japanese jumping a 

technology ? 

There are few typewriters in 

Japanese offices - the need for many 

thousands of written characters, 

each on a separate piece of type, 

made typing slow and arduous. 

Traditionally, most office work in 

Japan is handwritten or done over 

the 'phone. 

Top right: Recent advances in 

microelectronics have led almost 

overnight to sophisticated Japanese 

word processors. This touch 

keyboard enables text characters to 

be very quickly processed on the 

screen, then printed out on a very 

fast electronic printer. 

Bottom: Japan now boasts one of the 

most modern newspaper production 

offices in the world. The paper is 

written, edited, designed, typeset 

and printed using computer 

technology throughout. 

The editor and reporters write articles on their machines, 

which are stored on the hard disc. Articles are sent in by outside 

contributors, and are copy-typed, or read in by an optical 

character reader, one of those expensive devices which can 

transform text on paper into computer input, and also kept on 

the disc. When an issue is being made up, the editor puts a list of 

the articles he wants included on the disc, and the production 

editor uses that list to tell him what articles to pull into his com¬ 

puter for copy-editing. This involves checking spelling: he'll 

probably use a spelling correction program to help. It involves 

checking punctuation, and there will be a program to help with 

that too. When an article is satisfactory, he will put a header on it 

specifying what typeface it's to be set in, and send it down the 

telephone line to the printers. 

Meanwhile, the editorial secretary has to pay the contribu¬ 

tors. She has a program that looks at the finished articles, counts 

the number of words in each, looks up the contributor's file to 

see how much the editor has agreed to pay each writer, and 

calculates their fee. It can print out cheques ready for signature. 

It updates this file, so that later on it will be easy to see who wrote 

what, when and for how much. 

Much of the editor's time is taken up in correspondence with 

readers and contributors, and he'll use his microcomputer to 

draft letters which his secretary will create - possibly incor¬ 

porating standard phrases, or using complete standard letters in 

some cases - and get printed out. The letters will be filed 

electronically on the hard disc. 

The advertising department will be able to use their com¬ 

puters to keep track of who has ordered what pages in what 

issue. They will note the agreed discounts, and at the end of the 

month a program will calculate what each advertiser owes and 

send out invoices. The computer will keep track of statistics on 

booking and revenues. 

Sometimes an advertiser will ask to advertise in any issue 

which has an editorial feature mentioning his product. The 

advertising staff will search the articles on file to see if any 

include the name of his product and, if any do, to put a note in the 

file asking for notification when that article is going to be used. 

Ideally, this office will have no paper in it at all. It will use 

quite a lot of expensive hardware, but the saving in time and 

efficiency will more than pay for it. The people in the office will 

use standard software packages for word processing and data¬ 

base management - controlling files on the disc - but they may 

even write a lot of programs themselves, too. 
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The Portable office. 

All you need is a 'phone. Plug the 

handset into the rubber cups at the 

back of this portable terminal and 

you can contact the computer in 

your office from home or from a 

hotel room anywhere in the world. 

Stored text - memos or messages 

can be transmitted and received 

automatically. Journalists on some 

American newspapers send in their 

copy in this way. 

In some ways, a magazine is ideally suited to the computer age. 

Its staff do routine things to a mass of text. The final step might 

be to do away with the printed magazine completely, and that 

could happen, no doubt, in a few years. The material could be 

distributed by wire to people's homes, and displayed on their 

television screens, or printed out on their (by now) cheap 

printers and paid for in their telephone bills. 

There are many other businesses that could go the same way. 

One effect will be to cut down the numbers of supporting staff. 

In principle - it will doubtless take some time to realise - such an 

organisation will not need an elaborate accounts department. It 

won't need lots of typists producing and filing invoices. The 

people who work there will deal directly with the creative parts 

of their jobs, leaving the computers to do the boring bits. That, 

in turn, will cut down the numbers of managers. 

Several such units can be connected together via larger com¬ 

puters. A big company might, in five years' time, consist of a 

number of small, energetic profit centres which do their business 

on a local network, while feeding selected information into the 

firm's central minicomputer. The magazine, for instance, might 

be part of a larger group. Once a month, perhaps, the advertising 

department could run a program which totals the number of 

pages sold, the total amount of money taken and send it to a file 

for the attention of the managing director, where it's combined 

with similar results from other enterprises. 
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So, what would the visitor notice in such an office? Firstly, 

the keyboard and screen on every desk. Secondly, the relative 

tidyness of the desks; there would be very little paper lying 

about. Thirdly, the absence of filing cabinets; all the unit's files 

will be kept on the hard disc unit, which lives in a desk drawer. 

Fourthly, someone having a nervous breakdown in the corner 

because it's all too complicated. . . . 

The most noticeable thing about the office might well be that 

it isn't where you might expect it to be. Once you handle infor¬ 

mation electronically, there is much less need for people to be 

physically close to each other. The magazine's staff might want 

to be together, because a lot of their work consists in sharing 

their experience with each other but there is no real need for 

them to be in the same building as their managers, or as the other 

magazines of the same group. Some of the staff of one magazine 

might prefer to work at home in Chiswick, others in Wiltshire. 

Instead of mail, the staff would use the telephone network to 

send information to each other. Their contributors would be 

encouraged to write their articles on their machines at home, and 

to send them in by telephone - possibly by satellite, too, if they 

live abroad. 

If humans want to work this way it is now, or will soon be, 

technically, quite possible. The limits to the speed of change will 

largely be due to human reactions to change. Will we allow 
ourselves to work in this way? 

The cheap, home facsimile copier 

linked to the telephone (this one is 

French). Could it make electronic 

mail a real possibility? Is this how 
we might one day get our newspapers 

and letters? 
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Using Prestel As we^ as linking their own computers together, business people 

in business can a^so use the Prestel computer and the other kinds of public 
network we've talked about. 

As one example, the contributors to the imaginary magazine 

we described above might well send in their offerings through 

Prestel. They would connect their computers to the telephone 

line, dial up the Prestel number, 'access' the magazine's message 

page, and write onto it the article they want to submit. Later on, 

the magazine's computer would make a routine check of the 

message page, find something there and load it into its own files 

and put a note in the editor's message file. 

There are also going to be wider opportunities for selling 

information through Prestel. For instance, you might be thinking 

of making a journey and have a program in your computer at 

home to check British Rail's timetables to work out a route with 

times of trains and fares (in other words, a variation on the 'route¬ 

finding' program we wrote in Chapter 4). Perhaps, as is more 

likely, you wouldn't want to write this program yourself, so you 

would 'rent' it for a day from some software supplier, paying a 

small fee which is automatically added to your telephone bill. 

You might want to buy or sell something - let's say, a second¬ 

hand car. Businesses that today publish weekly lists of advertise¬ 

ments in newspapers could start to do the same thing on their 

computers. An advertiser would use his computer to put directly 

onto his disc what it is he has to sell. Just like an advertiser in 

'Exchange and Mart', for instance, he'd have to learn certain 

conventions which people use. One route down his program 

'menu' might run: 

SECTION = CARS 

TYPE = FORD 

MODEL = CONSUL 

LITRES = 2 

YEAR = 1977 

MILEAGE = 500 

PRICE = 3000 

TEL NO. 221 5000 

He would probably be charged a fee for putting his advertise¬ 

ment up and a further daily rate until he took it out. 

Enquirers would use their machines in much the same way. 

They'd send a message like this: 
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MAKE-FORD 

LITRES<3 

PRICE<2000 

MILEAGE< 10000 

and get back every car that matches this description. 

The great advantage of a networked system like this is that it 

is possible for buyers and sellers to contact each other directly - 

not only by receiving a phone number, for instance, but by 

leaving messages on the system itself. They could even pay for 

the goods through the computer, giving their credit card number! 

Beyond seeing that it is all possible, it is hard for us now to 

foresee how this business will develop. The whims and pre¬ 

ferences of users will be so important that they will dictate how 

growth happens. The system offers enormous flexibility, but it is 

up to its users to determine which of the possible paths of 

development are taken. 

The future? In future the speed of change may not be governed so much by 

the limits of technology as by our reaction to it. If humans want 

to live and work in the ways we have described it is now, or soon 

will be, technically quite possible. The automatic factory already 

exists in Japan. The highly automated magazine publishing house 

already exists, in effect, in America. 

But it is sobering to remember that the experimental British 

automatic factory mentioned above was closed down recently 

because it seemed a low priority compared with other activities 

in the recession. It is also sobering to look at the history of 

attempts to introduce new technology - much of it computerised 

- in the printing and publishing industries in Britain. 

However, it is quite possible to look forward to a time when 

all these amazing labour-saving worlds co-exist. And jobs? What 

will most people then do when the craftsmen, the clerks, the 

middle managers become unnecessary? Will we create a society 

in which to work is not seen as an essential part of life, essential 

to one's self-respect? or will we create new jobs in the 'caring' 

industries - health, education, welfare? Will new kinds of per¬ 

sonal services - hitherto undreamed of - be created in a luxurious 

Brave New World ? Will the working day and the working week 

become shorter? Or will we create a divided society where some 

have work and some do not? 
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Window on the world and 

window on the home. 

An experimental two-way 

computer-managed community 

television system. This Japanese lady 

can call up a range of services on her 

television set and take part in 

community television programmes 

and adult education classes using 

her own television camera and 

microphone. The keypad helps her 

to select channels, and videotext- 

type information, and makes it 

possible for her to vote on local 

issues at the press of a button. 

It is possible - and indeed fascinating - to speculate about what 

the future may bring. We really can't know - although one 

thing is certain: there will be change and there will be challenge. 

Choices will have to be made and decisions are best made against 

a background of knowledge. If this technology is capable of 

changing our lives then it is best that we understand it so that we 

can help it along if it seems good, and challenge it if it seems bad. 

We hope that this book - and the whole BBC Computer Literacy 

Project - has helped to provide a little of that understanding. 
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Future Past - future perfect ? This romanticised view of the future appeared 

in the 1969 catalogue of Nieman-Marcus the up-market American 

superstore. For Si0,000 the woman who has everything could buy a 

computer for her kitchen to help with household accounts and 'to find that 

little recipe'. Today the store doesn't sell computers because 'everyone has 

one'. Since 1969 there has been a revolution in hardware and hundreds of 

thousands of microcomputers have been sold. Yet a similar revolution in 

software is still to come. 
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Glossary 

Accumulator 

Acoustic coupler 

Address 

ALGOL 

Algorithm 

Alphanumeric 

Analogue 

Up till now the world of computers has been dominated by 

specialists who revel in using jargon. Whereas much jargon is 

unnecessary and makes communication difficult between those 

in the know and those outside, there are many technical terms 

which are useful and important; some, indeed, are coming into 

common use as the effects of computers spread. This glossary 

should help to explain the most widely used terms. 

A place in the computer where one number can temporarily be 

brought (for example from a part of the memory) and where, 

amongst other things, another number can be added to it, sub¬ 

tracted from it or compared with it. 

A gadget which enables audible tones, say from a telephone, to 

be turned into the digital form which the computer can under¬ 

stand (and vice-versa). 

In the computer, information in the form of numbers is moved 

around from place to place. Each place has an 'address' which is 

itself a number. In a way it is like the number of a house in 

a street. 

One of a number of high level languages (q.v.) - often used by 

mathematicians. 

Although we have avoided the use of this word in the book, it 

means the solution to a problem - say, on paper - which could 

then lead to the series of instructions which make up a computer 

program. However, the term does not necessarily have anything 

to do with computing. 

A mixture of characters which can be numbers or letters or 

symbols like '@' or any combination. The typewriter or com¬ 

puter keyboard is an 'alphanumeric' keyboard. 

A quantity (like temperature or time) which is continuously 

varying - as opposed to digital (q v.). Most things in the natural 

world are analogue. When we measure them and give them a 

numerical value, we digitise them. 
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A/D converter - 

Analogue to digital 

converter 

Applications program 

or applications software) 

Arithmetic & logic unit 

(ALU) 

Array 

Artificial intelligence 

ASCII 

Assembly language 

('assembler') 

Author language 

Backing storage 

(See under CONVERTER.) 

A computer program designed for a particular outside purpose - 

it might be for a business application or a game or be an educa¬ 

tional program. As opposed to systems software (see Software). 

An area in the central processor of the computer where arith¬ 

metical and logical processes (such as comparing two numbers) 

take place. 

In effect an orderly list or a table of numbers or words (data) 

where every position is labelled and can be handled separately 

or in a sequence by the computer. 

The ability of a computer (or computer-controlled machine) to 

perform a task which, if a human being were to perform the same 

task, would be said to require 'intelligence'. This begs the 

question, of course of what is meant by 'intelligence'. Often the 

computer will learn from experience and improve its perform¬ 

ance of a particular task. 

'American Standard Code for Information Interchange'. The 

internationally accepted code which represents numbers, letters 

and symbols with unique binary code values which the computer 

can then deal with. 

A low level language which uses mnemonics rather than ordinary 

words to give instructions to the computer. These mnemonics 

translate directly into the binary instructions which the com¬ 

puter understands in a much more economical way than does a 

high level language in that they take up less memory space. But 

it is less approachable for beginners. 

A 'very high level' language program which enables those not 

skilled in programming in, say, BASIC, to write applications 

programs easily because the author language (itself written in, 

say, BASIC) requires little more than the writing of instructions 

in ordinary English. 

Any outside storage medium (usually magnetic tape or disc) 

which supports and can be linked to the main memory in the 

computer. When the power is off, information in the backing 

storage is not lost. The capacity of a backing storage memory is 

much greater than the computer's internal working memory. 



Bar code 

BASIC 

Baud rate 

Binary 

Bit 

Branch 

Bug 

Bus 

Byte 

CAD 

CAL 

Cassette tape 

CEEFAX 

Central processing unit 

A pattern of printed lines on an object identifying it and contain¬ 

ing information about it which can be read into the computer by 

scanning it with a light pen. Common now on grocery packaging. 

The most popular 'high level language' for microcomputers. 

Stands for 'Beginners All-purpose Symbolic Instruction Code'. 

Chapter 4 is devoted to it. 

This is a measure of the number of bits per second travelling from 

one part of a computer system (e.g. a cassette filing system) to 

another, or between computers. 

A way of counting using only two alternative values - 0 or 1, 

'on' or 'off', 'black' or 'white'. Deep inside, computers like 

binary - indeed they can understand nothing else. 

A binary digit - a '0' or a '1' (see binary). 

A part of a computer program where a choice is made between 

alternative routes - the 'intelligence factor' in computing. 

A defect or mistake in a computer program. 

A set of electrical pathways or connectors inside a computer. 

'By eight'. Usually means a group of eight bits. One byte contains 

enough information to represent one ASCII character. 

Stands for 'computer aided design'. 

Stands for 'computer aided learning'. 

The 'cheap & cheerful' way of storing programs and data for a 

microcomputer, using a domestic tape recorder (see backing 

storage). 

The BBC's broadcast screen information service. Part of the 

television signal is used to send data which can then be displayed 

on the screen of a suitable television set. A form of viewdata 

(q.v.). 

The control 'brain' of the computer where all parts of the com¬ 

puter system are linked together and where the calculations and 

manipulation of data take place. 



Characters 

Chip 

COBOL 

Command 

Compatible 

Compiler 

Computer and computing 

Converter 

analogue to digital 

(or vice-versa) 

Crash 

Cursor 

Daisy wheel printer 

Data 

The all-purpose expression for numerals, letters & symbols 

which a computer can print or display on a screen. 

A single device containing many transistors and other com¬ 

ponents formed on the surface of a piece of silicon. When pack¬ 

aged up, looks like a centipede because of its many metal legs. 

A high level language usually used for business applications. 

A direct instruction to the computer which it carries out at once. 

Two computers are said to be compatible if a program written on 

one will run on the other without modification. 

A program inside the computer which converts a complete 

program - like an applications program - written in a high level 

language into the machine code version which the computer 

needs to be able to run it. 

The whole of this book is about the meaning of these two words. 

In a nutshell the computer is a device which can process in¬ 

formation according to instructions given to it by human beings 

and in this way perform useful or entertaining tasks. Computing 

is the art or science of getting the computer to do what you want. 

A device for converting analogue information (coming from the 

real world) in the form of a continuously varying electrical 

voltage from some kind of electrical sensor into the digital form 

which the computer can cope with - or the reverse. 

A computer is said to 'crash' when a program which is running 

cannot be completed and cannot be restarted. 

Some way of marking the screen with the position at which the 

next character typed in at the keyboard will appear. 

A printer which makes use of a plastic disc around the edge of 

which is a set of print characters. The wheel rotates at speed until 

the required character is brought before a hammer which strikes 

it against a ribbon. One wheel can easily be replaced with another 

with a different typeface. 

Loosely, means 'information' which a computer program can deal 

with. Data can be in the form of numbers or characters. 
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Database 

De-bugging 

Dialect 

Digital 

Disc 

or 'floppy' disc 

Dot matrix printer 

EPROM 

Expert system 

File 

Firmware 

Floppy disc 

Flow chart 

FORTRAN 

A self-important sounding word meaning an organised collection 

of files of information to which the computer has access. If many 

people have access to it through different terminals it might then 

qualify to be called a data bank. 

The business of testing a program and then changing it to get rid 

of 'bugs' or faults. 

A version of a particular computer language e.g. PET BASIC, 

BBC BASIC, RML BASIC - all are different dialects of BASIC with 

some things in common, others not. 

To do with numbers, c.f. 'Analogue'. 

A flat magnetic disc on which programs and data may be stored 

and retrieved quickly - far faster than cassette tape but more 

expensive (sometimes 'disk'). 

A printer using a series of electrically 'hammered' moving pins 

to create characters composed of a pattern of dots. 

Stands for erasable, programmable read-only memory - a chip 

which can be fed with a program and which will hold it until it is 

erased (usually by exposing the surface of the chip to ultraviolet 

light). After that it can be re-programmed. (See PROM, ROM). 

(See Artificial Intelligence.) Crudely, expert systems are able to 

make decisions in areas normally dependent on professional 

judgement - e.g. medicine, law, oil prospecting. 

An organised collection of information - e.g. computer programs. 

A program permanently held in a 'read only memory' chip in a 

computer. The term usually refers to the programs which manage 

the internal operations of the computer rather than applications 

programs, though these, too, could be 'blown' into firmware. 

(See disc.) 

A diagram on paper showing the sequence of events and choices 

which need to be made in the solution of a problem - usually 

(though not exclusively) relating to a computer program. 

A high level language mainly for scientific and mathematical use. 
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Garbage 

Graphics 

Handshaking 

Hardware 

Hard copy 

Hexadecimal or 'HEX' 

High level language 

Integrated circuit (IC) 

Interactive 

Input 

Instruction 

Interface 

Meaningless or unwanted data coming from the computer and 

arising from a number of causes. This has given rise to the maxim 

'Garbage in, garbage out' and the acronym 'GIGO'. 

The overall term meaning the appearance of pictures or dia¬ 

grams on the screen as opposed to letters and numbers. 

A 'dialogue' between two computers or a computer and a 

'peripheral device' - like a printer - which establishes that a 

message is passed between them to their mutual satisfaction. 

The physical bits and pieces of the computer - as opposed to the 

'software' or the programs. 

Tangible and permanent output from a computer, on paper. 

An arcane way of counting based not on base 2 (binary) or on 

base 10 (decimal) but on base 16. Understood by people who 

program in low level languages. One 'byte' (q.v.) can be repres¬ 

ented by two hexadecimal symbols, hence its significance. 

A programming language where the programmer uses instruc¬ 

tions which are close to his ordinary familiar language rather 

than machine code. In effect, the higher the 'level' of the langu¬ 

age the nearer.it is to ordinary language and the easier it is for the 

uninitiated to understand. 

The circuits combined together on the surface of a silicon chip. 

IC is often synonymous with 'chip'. 

A way of operating where the user is in direct and continual 

two way communication with the computer, maybe answering 

its questions and receiving its reactions to the answers. 

The route whereby information gets into the computer or the 

putting in of information by the operator (say from a keyboard). 

A computer program consists of a series of instructions, often 

used interchangably (though perhaps wrongly) with 'commands'. 

The boundary between two parts of a computer system. Often the 

boundary consists of a piece of electronic circuitry. Even more 

inelegant, as a verb, meaning to make one part of a computer 

system run smoothly with another. 
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Interpreter 

Keyboard 

Keywords 

Kilo 

Language 

LCD 

LED 

Location 

Low level language 

Machine code 

Memory 

A program living inside the computer which translates the key¬ 

words in a high level language program, line by line, as it runs 

into a more compact form which the processor can cope with. 

One form of input device for a computer. Keyboards are usually 

'Alphanumeric' (q.v.) but also contain special keys which per¬ 

form particular functions on the computer. 

Words in the vocabulary of a high level language which have a 

special meaning to the computer. 

A prefix meaning a thousand - e.g. kilobyte - a thousand 'bytes'. 

A prefix meaning approximately a thousand (actually it is 2 to 

the power of 10, which is 1024). 

A computer 'language' can hardly be considered as the same as, 

say, a language like French or German but it is an organised way 

of communicating with a computer using precisely defined 

instructions. 

Liquid crystal display. Most pocket calculators and digital 

watches have these. The characters usually appear as black 

against a light background. The effect is a chemical one, which 

uses up very little electrical power. 

Light emitting diode. An electronic component which emits light 

when excited by an electric current. 

A place in the computer's memory where information is to be 

stored (see address). 

(See machine code.) 

The pattern of 'Os' and 'Is' which the computer actually under¬ 

stands. It is the lowest level of language for a programmer to 

work in and all high level programs are concerted into machine 

code instructions automatically when they run (though not in 

the most efficient way, hence the need for programming directly 

in a low level language, since programs written directly in a low 

level language run faster than those in high level language.) 

A computer's memory is a device or series of devices capable of 

storing information temporarily or permanently in the form of 

patterns of binary 'Is' and 'Os'. The computer then 'reads' 
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Menu-driven programs 

information from the memory or in some cases also 'writes' 

information into it when it operates. 

1 Internal Memory - this usually consists of silicon chips within 

the body of the computer. Some of these memory chips will con¬ 

tain information which is permanently held there and which can 

only be 'read' and is not erased when the computer is switched 

off ('non-volatile', 'read-only memory'). Other chips represent 

the working memory of the computer where information can be 

stored temporarily when a program is running and which is lost 

when the computer is switched off ('volatile', 'random access 

memory'). The computer's capacity at any one time for handling 

information is limited. Consequently there is a need to have a 

'back-up' memory outside the computer. 

2 External Memory. This usually consists of a magnetic tape or 

disc on which binary information is stored and 'called up' by the 

computer as required. The information is not lost when the 

computer is switched off. 

Programs which present the operator with a list of choices at any 

particular time and these are displayed on the screen for him to 

choose from. Each choice leads down a different branch of the 

program. 

Micro Has two meanings - (i) 'small' - as in 'microcomputer' - and (ii) 

a millionth of something - e.g. microsecond, a millionth of a 

second. 

Microcomputer A small computer system built round a microprocessor but hav¬ 

ing all the necessary bits and pieces (peripherals and memory) to 

link with the outside world and store information. 

Microelectronics The use of electrical devices in which many different components 

are formed together (integrated) into microscopically small 

circuits on the surface of single 'chips' (usually of silicon). 

Microprocessor Sometimes used as a synonym for microcomputer but, more 

correctly, a microprocessor is the central chip containing the 

control unit for the computer. 

Minicomputer A medium sized computer of the kind which might be used by a 

medium sized company to keep its records, work out its payroll, 

stock control, etc. Midway between a 'micro' and a 'mainframe' 

computer. 
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Network 

Numeric 

Operating systems 

Output 

Paddle 

Parallel 

Pascal 

Package 

PCB 

(printed circuit board) 

Peripherals 

Port 

Portability 

Prestel 

Processor 

A system where a number of computers, terminals and other 

components (like printers and disc drives) can be linked together 

electronically - sometimes over some distance. 

To do with numbers. 

The software program sitting permanently inside the computer 

which supervises the running of applications programs and 

controls the operations of the various input and output devices 

like the video display unit, keyboard, etc. 

Information which a computer sends out to a screen or a printer 

or to a backing memory store. 

Another name for a joystick control - e.g. for a T.V. game. 

When electrical patterns of bits travel simultaneously along 

parallel wires they are said to be a 'parallel' bit stream. 

A high level language preferred by many to BASIC for general 

programming work. 

A word used to describe a computer program or collection of 

programs written to be useful to a number of people (as opposed 

to one written and tailored for a specific purpose for one client). 

The plastic board into which the computer's various electronic 

components are soldered. These are linked by thin inter¬ 

connecting wires printed on its surfaces. 

Bits and pieces of a computer system which connect in different 

ways with the central processor and memory and which form its 

input and output devices. Peripherals include printers, disc 

drives, joy sticks, graphics tablets, light pens, etc. 

A place where electrical connection can be made with the 

central processor in the computer. 

Programs are portable if they run on different computer systems. 

The name given by British Telecom to the first public viewdata 

service (q.v.) using the public telephone system. 

(See central processing unit.) 



Program A series of instructions which the computer carries out in se¬ 

quence. As a verb, to write these instructions. 

PROM (Programmable 

Read Only Memory) 

RAM 

(Random Access Memory) 

Real time 

ROM 

(Read Only Memory) 

Robot 

Scanning 

Serial 

Silicon 

A chip which can be programmed by the user. Once programmed, 

its contents are 'non-volatile'. (See also ROM, EPROM.) 

Memory into which information can be put (written) and from 

which it can instantly be copied (read) no matter where it is in the 

memory. RAM is the 'working memory' of the computer into 

which applications programs can be loaded from outside and 

then run. Sometimes called a read/write memory. 

A computer system is said to be operating in 'real time' if the 

processing of information fed in takes place virtually at once. 

A memory circuit in which the information stored in 'built into' 

the chip when it is made and which cannot subsequently be 

changed by the user. Information can be copied from ROM but 

it cannot be written there - hence the name read only memory. 

Another name for read only memory is 'firmware' since this 

implies software which is permanent or firmly in place, on a chip. 

A computer-controlled device which is fitted with sensors and 

activating mechanisms. The sensors receive information about 

the surrounding environment, send it to a computer which then 

decides on the basis of its program how the mechanical parts 

should respond - e.g. to pick something up or to move about. 

Some robots can be programmed to improve their performance as 

a result of their experience, (see artificial intelligence). 

This word usually refers to the very rapid examination of every 

item in a computer's 'list' of data to see if some condition is met. 

When electrical patterns of bits travel one after the other down 

a wire in a computer they are said to be a 'serial' bit stream - as 

opposed to a 'parallel' bit stream (q.v.). 

The chemical element which is used as the basis for the in¬ 

creasingly more complex integrated electronic circuits which 

recently have been responsible for the 'microelectronics revolu¬ 

tion'. Silicon is present in sand (which is silicon dioxide). It has 

odd electrical properties, sometimes conducting electricity and 

sometimes not, depending, for example, on what other sub¬ 

stances are mixed with it in minute quantities. 
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Software 

Statement 

Storage 

String 

Systems analyst 

Tape 

Telesoftware 

Teletext 

The general term which refers to all computer programs which 

can be run on computer hardware. A distinction can be made 

between the programs responsible for the running of the com¬ 

puter - its internal 'housekeeping' and operating systems and 

so on - and 'applications programs', (q.v.j. Ultimately, all soft¬ 

ware consists of patterns of binary information which give the 

computer its marching orders. 

Another name for an instruction used as part of a computer 

program. 

Another word for memory - a place where information can be 

kept in a form which is accessible to the computer. 

A set of characters one after the other which the computer can 

deal with. The last sentence could be thought of as a string - 

note that spaces count as 'characters'. A distinction is usually 

made between strings and numbers. The computer can perform 

arithmetic on numbers but not on characters. Thus 4711 could 

be a 'string' - simply four characters which could, for example, 

be written backwards as 1174. Alternatively it could be a number 

- four thousand seven hundred and eleven - which can be 

multiplied or divided (etc.). However it would be meaningless 

to say that the 'number' 4711 could be written backwards. 

A person trained in the analysis of complex physical or or¬ 

ganisational problems and able to offer solutions calling on a 

range of skills, one of which may involve the use of the computer 

and computer programming. 

Magnetic tape or punched paper tape can both be used to store 

computer programs or data. Neither is as fast as disc systems 

when it comes to finding the information stored but they do have 

advantages - cheapness, for example. 

Computer programs sent by telephone line or by television as 

part of the teletext signal. With a suitable decoder the computer 

program can be entered directly into the memory of a computer 

and then 'run'. A new development. 

An information service sent as a small part of the broadcast 

television signal. With a suitable decoder the information can 

be displayed on the home television screen as a series of 'pages'. 

The BBC's service is called CEEFAX; the IBA's is ORACLE. 
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Terminal 

Time-sharing 

Transistor 

Variable 

VDU 

(Visual Display Unit) 

Videotex 

Viewdata 

Voice recognition 

Voice synthesis 

Volatile memory 

Wand 

A peripheral device usually consisting of a keyboard and a 

screen which can link into a computer network sometimes using 

a telephone line as the link. 

A way of sharing out powerful computer facilities between a 

number of users who want those facilities at the same time on a 

number of separate terminals. Each user gets the impression that 

he has sole use of the computer. 

An electronic device which can act as a switch or an amplifier. 

Individual transistors are found in portable radio sets and 

amplifiers, but the transistor is also the building block of the 

integrated circuit on the silicon chip, one of which may contain 

thousands of transistors. 

An electronic 'box' or pigeon hole into which data can be put 

and subsequently be changed. A variable has a name and a value. 

The name does not change but the value can. Variables can also 

be 'numeric' or 'string' variables. 

A television-like screen on which the output of the computer can 

be displayed. The VDU is the most usual 'output peripheral 

device' of the computer. 

(Synonymous with viewdata.) 

A way of receiving digital information at a distance and dis¬ 

playing it on a television-like screen. Viewdata can involve 

telephone lines or television signals. (See Teletext, Prestel.) 

The ability of a computer to match the pattern of signals coming 

into it from a microphone with stored 'templates' held in its 

electronic memory and thus recognise words. 

The ability of the computer to use stored patterns of sounds 

within its memory to assemble words which can be played 

through a loudspeaker. 

Memory in which information is lost when the power is switched 

off. 

A pen-like device able to read optically coded labels (see bar 

codes). 
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Winchester disc 

Word 

Wordprocessing 

A powerful form of back-up storage for a computer. It consists 

of a rigid magnetic disc in a sealed container scanned by a head 

which does not quite touch the disc, therefore not wearing it out. 

When a computer operates it deals with groups of bits at a time. 

The minimum number of bits which the central processor 

handles at any one moment is called a 'word'. In a microcomputer 

the word is usually eight bits long. 

A powerful new office procedure for electronically storing, 

editing and manipulating text using an electronic keyboard, 

computer and printer. The text is recorded on a magnetic 

medium rather than on paper, except for the final 'print-out'. 
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Computers are affecting all of us in one way or another - and they’ll do so 
more and more as the years go by. They’re finding their way into banks, 
offices, shops, schools, onto the factory floor and now into the home. 

As everything else goes up in price, computer power is the one commodity 
which is becoming cheaper each year, bringing the personal microcomputer 
now within the reach of an increasingly large number of people. 

What does the computer mean to you ? 

An opportunity ? A threat ? A mystery ? Something only for young people ? 
Something surrounded in incomprehensible gobbledegook ? Gas bills ? Space 
Invaders ? Something to increase the efficiency of your business ? A challenging 
new hobby ? 

Whatever your view, this book will help you to learn what it’s all about - what 
this hitherto mysterious technology could mean for you or your children. 

Do you know a RAM from a ROM ? Do big computers and the very small 

ones work in the same way ? What is binary code ? What is BASIC ? Can 

anyone learn it ? 

Even more confused ? Then this could be the book for you. It attempts to 
answer these questions and many more. It is written for the layman. Using 
plain English it explains what computers do for us in the modern world, how 
and why they have developed and how they work. It looks at the business of 
problem solving and reminds us that computers don’t solve problems, we do. 
It provides an introduction to programming and to what it’s like to own a 
personal microcomputer. It explores how the microcomputer can be used as 
a tool in a whole range of areas as well as leading to a compelling new hobby 
and a lot of fun for young and old. Finally it takes a look into the future to 
see where this technological revolution might be taking us and what its 
limitations are. 


